Cho tứ giác ABCD có AD=BC. Gọi M, N, I là trung điểm của AB;CD;BD. Tia MN cắt tia AD ở E và cắt tia BC ở F.
CMR: a. Tam giác IMN cân
b. Góc AEM = Góc BFM
c. Nếu cho góc AEM= góc BFM, so sánh AD và BC
Giúp mik nha, mai mik cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng đường trung bình, ta có: KN = 1/2 AB, NI = 1/2 CD , IM = 1/2 AB , MK = 1/2 CD
Mà AB = CD (gt)
\(\Rightarrow KN=NI=IM=MK\)
\(\Rightarrow KNIM\)là hình thoi
Do đó: MN là tia phân giác của \(\widehat{IMK}\)(tính chất hình thoi)
Chúc bạn học tốt.
Áp dụng tính chất đường trung bình vào các tam giác ABD, BDC, ABC, ADC ta chứng minh được
\(MI=MJ=JN=NI=\frac{AD}{2}=\frac{BC}{2}\)
=> Tứ giác MINJ là hình thoi.
Xét ▲ODC ta có:
\(\widehat{ADC}+\widehat{DCB}=90^o\)
\(\Rightarrow\widehat{COD}=90^o\)
Có: \(\widehat{MIN}=\widehat{COD}=90^o\) (cạnh tương ứng song song)
\(\Rightarrow MINJ\) là hình thoi vuông.
M N P Q E B A C D
Gọi \(E=AD\cap BC\)
\(\Rightarrow\widehat{ADC}+\widehat{BCD}=90^0\)
\(\Rightarrow\widehat{DEC}=90^0\)
\(\Rightarrow AD\perp BC\)
học sinh tự chứng minh
\(IN\)là đường trung bình : \(\Delta ABC;IN=\frac{1}{2}BC;IN//BC\)
\(MK\)là đường trung bình : \(\Delta DBC;MK=\dfrac{1}{2}BC;MK//BC\)
\(IK\)là đường trung bình: \(\Delta BAD;IK=\dfrac{1}{2}AD;IK//AD\)
\(NM\)là đường trung bình: \(\Delta ACB;NM=\dfrac{1}{2}AD;NM//AD\)
Mà \(AD=BC\Rightarrow IN=MK=IK=NM\)
\(IN//BC\)
\(IK//AD\) \(\hept{\begin{cases}\\\end{cases}}\Rightarrow IN\perp IK\) \(\hept{\begin{cases}\\\\\end{cases}}\Rightarrow INMK\)là hình vuông
\(BC\perp AD\)
Cho tứ giác ABCD. Gọi M, N là trung điểm của AD và BC, biết MN =(AB + CD)/2. C/M ABCD là hình thang
gọi I là giao điểm của MN và BD
ta có
MN=(AB + DC)/2
=> MI + IN = AB/2 + DC/2
=> MI = AB/2 và IN = DC/2
=> MI và IN là đường tb của tam giác ABD và tam giác BDC
=> MI // AB và IN // DC
vì M,I,N thẳng hàng nên => AB // DC => tứ giác ABCD là hình thang
a: Sửa đề; B đối xứng D qua N
Xét tứ giac ABCD có
N là trung điểm chung của AC và BD
nên ABCD là hình bình hành
=>AB//CD
b: Xét tứ giá AMBP có
I là trung điểm chung của AB và MP
AB vuông góc với MP
Do đó: AMBP là hình thoi