K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

a)

Tam giác DAB có IO // AB nên

\(\frac{IO}{AB}=\frac{DI}{DA}\) (hệ quả của định lý Talet)

Tam giác ACD có OI // CD nên

\(\frac{OI}{CD}=\frac{AI}{AD}\) (hệ quả của định lý Talet)

Ta có: \(\frac{IO}{AB}+\frac{OI}{CD}=\frac{DI}{DA}+\frac{AI}{AD}=\frac{DI+AI}{DA}=\frac{DA}{DA}=1\)

=> \(OI\left(\frac{1}{AB}+\frac{1}{CD}\right)=1\)

=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OI}\)

b)

Tam giác CAB có OK // AB nên

\(\frac{OK}{AB}=\frac{CK}{CB}\) (hệ quả của định lý Talet)

\(\frac{CK}{CB}=\frac{DI}{DA}\)

=> \(\frac{OK}{AB}=\frac{DI}{DA}\)

\(\frac{DI}{DA}=\frac{OI}{AB}\) (chứng minh trên)

=> \(\frac{OK}{AB}=\frac{OI}{AB}\)

=> OK = OI

\(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OI}\)

=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OK}\)

c)

O là trung điểm của IK (OK = OI)

=> IK = 2OK

Ta có: \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OK}\)

=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{2OK}\)

=> \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{IK}\)

24 tháng 2 2017

Phương Linh P/s: Bạn có thể áp dụng định lý đã được chứng minh ở bài 19 SGK Toán 8 tập 2 trang 68.

3 tháng 12 2018

Gợi ý: Kẻ AH ^ CD tại H, kẻ BK ^ CD tại K

Tính được SABCD = 180cm2

14 tháng 6 2021

từ A hạ \(AE\perp DC\)

từ B hạ \(BF\perp DC\)

\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật

\(=>AB=EF=2cm\)

vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)

mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)

\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)

xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)

\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)

15 tháng 6 2021

cảm ơn cậu

 

\(=\dfrac{\left(6+10\right)}{2}=8\)

\(=\dfrac{6+10}{2}=8\left(cm\right)\)

23 tháng 3 2017

21 tháng 6 2018

Đáp án A

Ta có:  V = π A H 2 . A B + 1 3 π A H 2 B H + C K = 2 π A H 2 + 2 3 π A H 2

           = 6 π ⇔ 2 A H 2 + 2 3 A H 2 = 6 ⇔ A H = 3 2 ⇒ S A B C D = A B + C D 2 . A H = 9 2