K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

A B C H D E 1 2 1 1

Cm: Xét t/giác ABH và t/giác ACH

có : AB = AC (gt)

   \(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)

      AH : chung

=> t/giác ABC = t/giác ACH (ch - cgv)

=> BH = HC (2 cạnh t/ứng )     => AH là đường cao của t/giác ABC

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc t/ứng) => AH là đường p/giác của t/giác ABC

Ta có: BH = HC (cmt)

  \(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)

=> AH là đừng trung trực của t/giác ABC

b) Ta có: BH = HC = 1/2. BC = 1/2 . 8 = 4 (cm)

Áp dụng t/c của dãy tỉ số bằng nhau vào t/giác ABH vuông tại H , ta có:

 AB2 = AH2 + BH2 

=> AH2 = AB2 - BH2 = 52 - 42 = 25 - 16 = 9

=> AH = 3 

Vậy AH = 3 cm

c) Xét t/giác ADH và t/giác AEH

có : \(\widehat{ADH}=\widehat{AEH}=90^0\) (gt)

    AH : chung

     \(\widehat{A_1}=\widehat{A_2}\) (gt)

=> t/giác ADH = t/giác AEH (ch - gn)

=> AD = AE (2 cạnh t/ứng)

=> t/giác ADE cân tại A

=> \(\widehat{D_1}=\widehat{E_1_{ }}=\frac{180^0-\widehat{A}}{2}\) (1)

Ta có: AB = AC (gt) 

=> t/giá ABC cân tại A

=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)

Từ (1) và (2) => \(\widehat{D_1}=\widehat{B}\)

Mà 2 góc này ở vị trí đồng vị 

=> DE // BC (Đpcm)