Cho tam giác ABC (A=90°) cho AB=5cm; BC=13cm
a) Tính cạnh AC , tính chu vi , diện tích tam giác ABC
b) Kẻ BD là tia phân giác góc ABC. Cạnh AB lấy điểm M sao cho BM=BA.
Chứng minh tam giác ABD=tam giác MBD từ đó suy ra DM vuông góc BC.
c) Gọi H là giao điểm của AB và BM chứng minh tam giác HBC cân
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
2 tháng 11 2021
Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right)\)
LQ
2
30 tháng 1 2023
\(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
AB<AC<BC
=>góc C<góc B<góc A
LN
1
NH
1
NV
Nguyễn Việt Lâm
Giáo viên
11 tháng 12 2021
Áp dụng Pitago: \(BC=\sqrt{AB^2+AC^2}=13\)
Do tam giác ABC vuông tại A \(\Rightarrow BC\) là đường kính
\(\Rightarrow R=\dfrac{1}{2}BC=\dfrac{13}{2}=6,5\left(cm\right)\)