K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

a, xet tam giac ABM va tam giac ACM co

AB = AC ( tam giac ABC can)

goc ABM = goc ACM (tam giac ABC can)

BM = MC ( AM la duong trung tuyen)

suy ra tam giac ABM = tam giac ACM (c.g.c)

b,ta co BM=MC=1/2BC

suy ra BM = 1/2.6=3

ta co AM = AB + BM = 5+3 = 8

2 tháng 5 2017

C và d thì sao

15 tháng 4 2021

Dễ và cơ bản mà nhỉ:vv

a) Xét ∆ABM và ∆ACM:

AB=AC (∆ABC cân tại A)

BM=CM (AM là trung tuyến)

\(\widehat{ABM}=\widehat{ACM}\) (∆ABC cân tại A)

=> ∆ABM=∆ACM (c.g.c)

b) Theo câu a: ∆ABM=∆ACM 

=> \(\widehat{AMB}=\widehat{AMC}\)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (2 góc kề bù)

=> \(\widehat{AMB}=\widehat{AMC}=90^o\)

=> AM vuông góc với BC

c) M là trung điểm của BC

=> \(MB=MC=\dfrac{BC}{2}=\dfrac{6}{2}=3\)

Áp dụng định lý Py-ta-go vào ∆ABM, ta có:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow5^2=AM^2+3^2\Rightarrow AM^2=5^2-3^2=16=4^2\)

\(\Rightarrow AM=4\) (cm)

Vậy AM=4cm.

b) Cm theo cách khác:

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

hay AM\(\perp\)BC(đpcm)

10 tháng 5 2022

mình chỉ giúp ý d theo mong muốn của bạn thôi :)

Có : AH = AK ( cái này bạn chứng minh ở câu  trên chưa mình không biết; nếu chưa thì bạn chứng minh đi nhé )

=> A thuộc đường trung trực của HK

và MH=MK

=> M thuộc đường trung trực của HK

=> AM là đường trung tực của HK

=> AM ⊥ HK

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc với BC

d: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

góc HAM=góc KAM

Do đó: ΔAHM=ΔAKM

=>AH=AK

3 tháng 12 2021

Xét Δ ABM và Δ ACM có:

AB = AC (gt)

AM là cạnh chung

Góc BAM = góc CAM (AM là tia phân giác góc BAC)

⇒ Δ ABM = Δ ACM (c_g_c)

30 tháng 12 2021

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

a: Xet ΔAMB vuông tại M và ΔAMC vuông tại M có

AB=AC

AM chung

=>ΔAMB=ΔAMC

b: I nằm trên trug trực của AB

nên IA=IB

=>ΔIAB cân tại I

 

29 tháng 3 2023

em cảm ơn ạ:33

24 tháng 12 2023

loading... a) Do AM là tia phân giác của ∠BAC (gt)

⇒ ∠BAM = ∠CAM

Xét ∆ABM và ∆ACM có:

AB = AC (gt)

∠BAM = ∠CAM (cmt)

AM là cạnh chung

⇒ ∆ABM = ∆ACM (c-g-c)

b) Do ∆ABM = ∆ACM (cmt)

⇒ BM = CM (hai cạnh tương ứng)

⇒ M là trung điểm của BC

Do ∆ABM = ∆ACM (cmt)

⇒ ∠AMB = ∠AMC (hai góc tương ứng)

Mà ∠AMB + ∠AMC = 180⁰ (kề bù)

⇒ ∠AMB = ∠AMC = 180⁰ : 2 = 90⁰

⇒ AM ⊥ BC

c) Do ∠BAM = ∠CAM (cmt)

⇒ ∠EAM = ∠FAM

Xét hai tam giác vuông: ∆AME và ∆AMF có:

AM là cạnh chung

∠EAM = ∠FAM (cmt)

⇒ ∆AME = ∆AMF (cạnh huyền góc nhọn)

⇒ ME = MF (hai cạnh tương ứng)

24 tháng 12 2023

a,
Xét tam giác ABC có:
+ AB = AC (giả thuyết)
+ Góc CAM = MAB (AM là phân giác góc BAC)
+ AM chung
⇒ 2 tam giác bằng nhau (cgc) (đpcm)

b,
Ta có:
+ Tam giác AMC = Tam giác ABM (theo câu a)
⇒ CM = MB (2 cạnh tương ứng) (1)
⇒ M là trung điểm BC (đpcm)
+ Mà AM là tia phân giác góc CAB (2)
+ Góc AMC = Góc AMB (3)
Từ (1), (2), (3).
⇒ AM ⊥ BC (t/c) (đpcm)

c,
Ta có:
Tam giác ACM = Tam giác ABM (theo câu A)
⇒ Góc ACM = Góc ABM (2 góc tương ứng)
Ta có:
+ ME ⊥ AB (giả thuyết)
⇒ Tam giác MEB vuông tại E
+ MF ⊥ AC (giả thuyết)
⇒ Tam giác CFM vuông tại F
Xét tam giác CFM vuông tại F và tam giác MEB vuông tại E có:
+ Góc ACM bằng góc ABM (chứng minh trên)
+ MC = MB (theo câu b)
⇒ Hai tam giác CFM = MEB (cạnh huyền góc nhọn)
⇒ ME = MF (hai cạnh tương ứng) (đpcm)