K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

anh yêu em Linh

18 tháng 1 2018

A=1+4+42+43+............+499

4A = 4+42+43+44+......+499+4100

=> 3A = 4100-1

=> A = \(\frac{4^{100}-1}{3}\)

B = \(\frac{4^{100}}{3}\)

mà 4100 > 4100-1

=> A < B (đpcm)

20 tháng 10 2021

\(\Rightarrow4A=4+4^2+4^3+...+4^{100}\\ \Rightarrow4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\\ \Rightarrow3A=4^{100}-1< 4^{100}=B\\ \Rightarrow A< \dfrac{B}{3}\)

9 tháng 8 2019

Đáp án cần chọn là: D

21 tháng 8 2023

\(4S=4+4^2+4^3+4^4+...+4^{100}\)

\(3S=4S-S=4^{100}-1\Rightarrow3S+1=4^{100}\)

Ta có \(32^{20}=\left(2^5\right)^{20}=2^{100}\)

\(\Rightarrow4^{100}>2^{100}\Rightarrow3S+1>32^{20}\)

19 tháng 12 2021

\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{98}+4^{99}\right)\\ S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{98}\left(1+4\right)\\ S=\left(1+4\right)\left(1+4^2+...+4^{98}\right)=5\left(1+4^2+...+4^{98}\right)⋮5\)

19 tháng 12 2021

\(S=\left(1+4\right)+...+4^{98}\left(1+4\right)\)

\(=5\left(1+...+4^{98}\right)⋮5\)

12 tháng 8 2023

 a)\(...A=\dfrac{2^{50+1}-1}{2-1}=2^{51}-1\)

b) \(...\Rightarrow B=\dfrac{3^{80+1}-1}{3-1}=\dfrac{3^{81}-1}{2}\)

c) \(...\Rightarrow C+1=1+4+4^2+4^3+...+4^{49}\)

\(\Rightarrow C+1=\dfrac{4^{49+1}-1}{4-1}=\dfrac{4^{50}-1}{3}\)

\(\Rightarrow C=\dfrac{4^{50}-1}{3}-1=\dfrac{4^{50}-4}{3}=\dfrac{4\left(4^{49}-1\right)}{3}\)

Tương tự câu d,e,f bạn tự làm nhé

Bài 2: 

b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)

hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)

Bài 1: 

a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)

\(=75\cdot\left(-4\right)+603\)

\(=603-300=303\)

Bài 2: 

a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ

mà số nguyên tố chẵn duy nhất là 2

nên số lẻ còn lại là 599(thỏa ĐK)

Vậy: Hai số nguyên tố cần tìm là 2 và 599

4 tháng 4 2021

b,Gọi ƯCLN(21n+4,14n+3)=d

21n+4⋮d ⇒42n+8⋮d

14n+3⋮d ⇒42n+9⋮d

(42n+9)-(42n+8)⋮d

1⋮d ⇒ƯCLN(21n+4,14n+3)=1

Vậy phân số 21n+4/14n+3 là phân số tối giản

 

\(A=1+4+4^2+4^3+4^4+4^5+...+4^{2019}+4^{2020}+4^{2021}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2019}+4^{2020}+4^{2021}\right)\)

\(=21+4^3\cdot21+...+4^{2019}\cdot21\)

\(=21\left(1+4^3+...+4^{2019}\right)⋮21\)

1 tháng 11 2023

\(A=1+4+4^2+4^3+...+4^{2021}\\=(1+4+4^2)+(4^3+4^4+4^5)+(4^6+4^7+4^8)+...+(4^{2019}+4^{2020}+4^{2021})\\=21+4^3\cdot(1+4+4^2)+4^6\cdot(1+4+4^2)+...+4^{2019}\cdot(1+4+4^2)\\=21+4^3\cdot21+4^6\cdot21+...+4^{2019}\cdot21\\=21\cdot(1+4^3+4^6+...+4^{2019})\)

Vì \(21\cdot(1+4^3+4^6+...+4^{2019})\vdots21\)

nên \(A\vdots21\)

\(\text{#}Toru\)

11 tháng 11 2021

\(A=\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)

\(=21\left(1+...+4^{57}\right)⋮7\)

11 tháng 11 2021

cứ tổng của 3 số liên tiếp được 1 số chia hết cho 7
=> (1+4+4^2)+(4^3+4^4+4^5)+.....+(4^57+4^58+4^59)(20 cặp số)
=> 21+ 4^3(1+4+4^2)+...+4^57(1+4+4^2)
......
Vì 21 chia hết cho 7=> 21.(........) chia hết cho 7=> A chia hết cho 7
đpcm