Tìm \(n\) để \(A⋮B\)
a) \(A=4x^{n+1}y^2;B=3x^3y^{n-1}\)
b) \(A=7x^{n-1}y^5-5x^3y^4;B=5x^2y^n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đế C và D cùng tồn tại thì:
\(\hept{\begin{cases}n-1\ne0\\n+1\ne0\end{cases}}\) <=> \(\hept{\begin{cases}n\ne1\\n\ne-1\end{cases}}\)
Vậy....
b) (n là số nguyên)
để C là số nguyên thì: 2 chia hết cho n - 1
hay n - 1 thuộc Ư(2) = {-2; -1; 1; 2}
=> n = {-1; 0; 2; 3}
Do n # -1 nên n = { 0; 2; 3}
n = 0 thì D = 4 (t/m)
n = 2 thì D = 2 (t/m)
n = 3 thì D = 7/4 (loại)
Vậy n = {0; 2} thì C và D đều nguyên
a) C và D cùng tồn tại khi \(n\ne\pm1\)
b) Để C là số nguyên
=> 2 chia hết cho n - 1
=> n - 1 thuộc Ư(2) ={1;-1;2;-2}
nếu n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
n-1 = 2 => n = 3
n -1 = - 2 => n = -1
Để \(D=\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=1+\frac{3}{n+1}\)là số nguyên
=> 3 chia hết cho n + 1
=> n + 1 thuộc Ư(3)={1;-1;3;-3}
nếu n + 1 = 1 => n = 0 (TM)
n + 1 = - 1 => n = - 2 (Loại)
n + 1 = 3 => n = 2 (TM)
n + 1 = - 3 => n = - 4 (Loại)
KL: n = 0 hoặc n = - 2 thì C và D đều là số nguyên
Với mỗi số tự nhiên m và n ta có: \(x^n:x^m\) khi và chỉ khi \(n\ge m\).
a) \(x^4:x^n\) nên \(n\le4\). Do n là số tự nhiên nên \(n=0,1,2,3,4\).
b) { \(n\in N\)| \(n\ge3\)}.
c) { \(n\in N\)| \(n\ge2\)}.
d) \(\hept{\begin{cases}n\ge2\\n+1\ge5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}n\ge2\\n\ge4\end{cases}}\)\(\Leftrightarrow n\ge4\).
a: \(N=\left(\dfrac{1}{y-1}+\dfrac{1}{\left(y-1\right)\left(y^2+y+1\right)}\cdot\dfrac{y^2+y+1}{y+1}\right)\cdot\left(y^2-1\right)\)
\(=\dfrac{y+1+1}{\left(y-1\right)\left(y+1\right)}\cdot\left(y^2-1\right)=y+2\)
b: Thay y=1/2 vào N, ta được:
N=1/2+2=5/2
c: Để N>0 thì y+2>0
hay y>-2
Kết hợp ĐKXĐ, ta được:
\(\left\{{}\begin{matrix}y>-2\\y\notin\left\{-1;1\right\}\end{matrix}\right.\)
Lời giải:
a. ĐKXĐ: $y\neq \pm 1$
\(N=\left(\frac{1}{y-1}-\frac{1}{(1-y)(1+y+y^2)}.\frac{y^2+y+1}{y+1}\right).(y^2-1)\)
\(=(\frac{1}{y-1}-\frac{1}{(1-y)(y+1)})(y-1)(y+1)\)
\(=\frac{1}{y-1}(y-1)(y+1)-\frac{1}{-(y-1)(y+1)}.(y-1)(y+1)=y+1-(-1)=y+2\)
b. Khi $y=\frac{1}{2}$ thì:
$N=\frac{1}{2}+2=\frac{5}{2}$
c. Để $N>0\Leftrightarrow y+2>0\Leftrightarrow y>-2$
Kết hợp đkxđ suy ra $y>-2$ và $y\neq \pm 1$ thì $N$ dương.
\(a,A=4x^{n+1}y^2;B=3x^3y^{n-1}\)
Để \(A⋮B\) thì:
\(\left\{{}\begin{matrix}n+1\ge3\\n-1\le2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n\ge2\\n\le3\end{matrix}\right.\Leftrightarrow2\le n\le3\)
Vậy....
\(b,A=7x^{n-1}y^5-5x^3y^4;B=5x^3y^n\)
Để \(A⋮Bthì:\)
\(\left\{{}\begin{matrix}n-1\ge2\\\\\\n\le4\end{matrix}\right.\)
\(\Leftrightarrow....\Leftrightarrow3\le n\le4\)
Vậy....
De ma bn
De \(A⋮B\)thi cac so mu o B phai nho hon hoac bang so mu o A
the la tim dc n