cho A=1+3+3^2+...+3^20;B=3^21.Tính 2A-2B? giúp mình vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
Tổng 20 số hạng đầu là:
\(u_1\cdot\dfrac{1-q^{20}}{1-q}=3\cdot\dfrac{1-2^{20}}{1-2}=3\cdot\dfrac{2^{20}-1}{2-1}=3\cdot\left(2^{20}-1\right)\)
=>Chọn C
ta đi tính tổng: 1 + 2 + 3 +....+ 20 = (1 + 20) x 20 : 2 = 210
Sau đó bình phương số 210 ta có kết quả:
Vậy: A = 13 + 23 + 33 +... + 203 = 210 x 210 = 44100
a: A=3^2(1^2+2^2+...+10^2)
=9*385
=3465
b: B=2^3(1^3+2^3+...+10^3)
=8*3025
=24200
A=1.2+2.3+3.4+...+19.20
=> 3A=1.2.3+2.3.3+3.3.4+....+19.20.3
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+....+19.20.21-18.19.20
=19.20.21
=7980
nguồn: Minh Triều
\(A=1+3+3^2+...+3^{20}\)
\(=>3A=3+3^2+3^3+...+3^{21}\)
\(=>3A-A=\left(3+3^2+3^3+...+3^{21}\right)-\left(1+3+3^2+...+3^{20}\right)\)
\(=>2A=3^{21}-1\)
Ta có : \(2B=3^{21}\)
\(=>2A-2B=\left(3^{21}-1\right)-\left(3^{21}\right)\)
\(=>2A-2B=-1\)