Cho 2 tập hợp : A = \(\left[2m-1;-\infty\right];B=\left(-\infty;m+3\right)\)A\(\cap\)B # \(\varnothing\) timf m khi và chir khi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(-3;-1\right)\cup\left(1;2\right)\)
\(B=\left(-1;+\infty\right)\)
\(C=\left(-\infty;2m\right)\)
\(A\cap B=\left(-3;-1\right)\)
Để \(A\cap B\cap C\ne\varnothing\Leftrightarrow2m\ge-1\)
\(\Leftrightarrow m\ge-\dfrac{1}{2}\)
Vậy \(m\ge-\dfrac{1}{2}\) thỏa đề bài
\(\left(A\backslash B\right)\cup\left(A\backslash C\right)=\varnothing\Leftrightarrow\left\{{}\begin{matrix}A\backslash B=\varnothing\\A\backslash C=\varnothing\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}A\subset B\\A\subset C\end{matrix}\right.\) \(\Leftrightarrow A\subset\left(B\cap C\right)\)
\(B\cap C=\left(-1;1\right)\Rightarrow\left\{{}\begin{matrix}m-2>-1\\2m+5\le1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>1\\m\le-2\end{matrix}\right.\) ko tồn tại m thỏa mãn yêu cầu
Lời giải:
$A\cap B\cap C=A\cap (B\cap C)$
Để tập hợp trên khác rỗng thì trước hết $B\cap C\neq \varnothing$
Điều này xảy ra khi $2m>m\Leftrightarrow m>0$
Khi đó: $B\cap C=(m; 2m)$
$\Rightarrow A\cap B\cap C=((-3;-1)\cup (1;2))\cap (m; 2m)$
$=((-3;-1)\cap (m;2m))\cup ((1;2)\cap (m; 2m))$
$=(1;2)\cap (m; 2m)$ (do $m>0$)
Để $(1;2)\cap (m; 2m)\neq \varnothing$ thì:
\(\left\{\begin{matrix} 2m>1\\ m< 2\end{matrix}\right.\Leftrightarrow m\in (\frac{1}{2};2)\)
Vậy...........
Bạn viết nhầm tập hợp A
\(A\cap B\ne\varnothing\Leftrightarrow m+3>2m-1\)
\(\Rightarrow m< 4\)