K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

ta có: \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1}=\dfrac{2008^{2009}-1+3}{2008^{2009}-1}=1+\dfrac{3}{2008^{2009}-1}\)

B=\(\dfrac{2008^{2009}}{2008^{2009}-3}=\dfrac{2008^{2009}-3+3}{2008^{2009}-3}=1+\dfrac{3}{2008^{2009}-3}\)

ta thấy: \(1+\dfrac{3}{2008^{2009}-1}\)<\(1+\dfrac{3}{2008^{2009}-3}\)

vậy A<B

A = \(\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)

Ta có: 

\(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)

\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)

\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)

Từ 3 điều trên suy ra : A < B

21 tháng 9 2023

\(A=\dfrac{2008^{2008}+1}{2008^{2009}+1}\)

\(2008\cdot A=\dfrac{2008^{2009}+2008}{2008^{2009}+1}\)

\(=\dfrac{2008^{2009}+1+2007}{2008^{2009}+1}\)

\(=1+\dfrac{2007}{2008^{2009}+1}\)

\(B=\dfrac{2008^{2007}+1}{2008^{2008}+1}\)

\(2008\cdot B=\dfrac{2008^{2008}+2008}{2008^{2008}+1}\)

\(=\dfrac{2008^{2008}+1+2007}{2008^{2008}+1}\)

\(=1+\dfrac{2007}{2008^{2008}+1}\)

Ta có: \(2008^{2009}+1>2008^{2008}+1\)

\(\Rightarrow\dfrac{1}{2008^{2009}+1}< \dfrac{1}{2008^{2008}+1}\)

\(\Rightarrow\dfrac{2007}{2008^{2009}+1}< \dfrac{2007}{2008^{2008}+1}\)

\(\Rightarrow1+\dfrac{2007}{2008^{2009}+1}< 1+\dfrac{2007}{2008^{2008}+1}\)

hay \(A < B\)

#\(Toru\)

26 tháng 2 2018

Ta có : 

\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

Vì : 

\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)

\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)

\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)

Nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

\(\Rightarrow\)\(A>B\)

Vậy \(A>B\)

26 tháng 2 2018

Ta có: \(B=\frac{2008+2009+2010}{2009+2010+2011}\)

                  \(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

Vì \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)

    \(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)

   \(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)

nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)

hay A > B

Vậy A > B 

Giải:

Ta có:

A=20092008+1/20092009+1

2009A=20092009+2009/20092009+1

2009A=20092009+1+2008/20092009+1

2009A=20092009+1/20092009+1 + 2008/20092009+1

2009A=1+2008/20092009+1

Tương tự:

B=20092009+1/20092010+1

2009B=1+2008/20092010+1

Vì 2008/20092009+1 > 2008/20092010+1 nên 2009A>2009B

⇒A>B

20 tháng 1 2020

ta có A = 2008^2009+2 / 2008^2009-1 = 2008^2009-1+3 / 2008^2009-1 = 1 + 3/2008^2009-1

lại có B = 2008^2009 / 2008^2009-3 = 2008^2009-3+3 / 2008^2009-3 = 1 + 3/2008^2009-3

vì 3/2008^2009-1 < 3/2008^2009-3 => 1 + 3/2008^2009-1 < 1 + 3/2008^2009-3

Hay A<B 

Vậy A<B

21 tháng 1 2020

^-^

fm
gb
66