K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

\(A=x^4+6x^2+8x^3-2x-3\)

\(B=3x^2+x^4+4x^3-3x+5\)\(\Rightarrow2B=6x^2+2x^4+8x^3-6x+10\)

\(\Rightarrow A-2B=x^4+6x^2+8x^3-2x-3\)\(-6x^2-2x^4-8x^3+6x-10\)

\(=-x^4+4x-13\)

2 tháng 3 2020

Ta có 

\(A=x^4+8x^3+6x^2-2x-3\)

\(B=x^4+4x^3+3x^2-3x+5\Rightarrow2B=2x^4+8x^3+6x^2-6x+10\)

\(A-2B=x^4+8x^3+6x^2-2x-3\)\(-2x^4-8x^3-6x^2+6x-10\)

\(A-2B=-x^4+4x-13\)

19 tháng 4 2016

\(P\left(x\right)=5+x^3-2x+4x^3+3x^2-10=\left(x^3+4x^3\right)+3x^2+2x-\left(10-5\right)=5x^3+3x^2+2x-5\)

\(Q\left(x\right)=4-5x^3+2x^2-x^3+6x-11x^3-8x=-\left(5x^3+x^3+11x^3\right)+2x^2-\left(8x-6x\right)+4=-17x^3+2x^2-2x+4\)

\(P\left(x\right)-Q\left(x\right)=\left(5x^3+3x^2+2x-5\right)-\left(-17x^3+2x^2-2x+4\right)=5x^3+3x^2+2x-5+17x^3-2x^2+2x-4\)

                             \(=\left(5x^3+17x^3\right)+\left(3x^2-2x^2\right)+\left(2x+2x\right)-\left(5+4\right)=22x^3+x^2+4x-9\)

21 tháng 4 2019

a) \(A+B=2x^3+x^2-4x+x^3+3+6x+3x^3-2x+x^2-5\)

                   \(=6x^3+2x^2-2\)

b) \(A-B=\left(2x^3+x^2-4x+x^3+3\right)-\left(6x+3x^3-2x+x^2-5\right)\)

                  \(=-8x+8\)

c) Đặt \(f\left(x\right)=-8x+8\)

 Ta có: \(f\left(x\right)=0\Leftrightarrow-8x+8=0\)

                              \(\Leftrightarrow-8x=-8\)

                              \(\Leftrightarrow x=1\)

Vậy \(x=1\)là nghiệm của đa thức f(x).

                             

11 tháng 5 2019

Làm tắt thôi nhé bn !

Có h(x) = f (x) + g (x) = 3x2 + 2 ( sau khi tính kết quả sẽ ra vậy nhé ! mk làm tắt )

Lại có h ( x) có :

3x2  \(\ge\)0

2 >0 

Từ 2 điều này => 3x2 +2 \(\ge2\)

=> h(x) ko có nghiệm

11 tháng 5 2019

          F(x) = \(-6x^3+8x^2-\frac{1}{2}-4^4\)

 +       G(x) =    \(6x^3-5x^2+\frac{5}{2}+4x^4\)

_________________________________________

          H(x) =                  \(3x^2+3\)

Vậy H(x) = 3x2 + 3

                

         

10 tháng 9 2016

Dài 166

b) 2x2+3x-27=2x2-6x+9x-27=2x(x-3)+9(x-3)=(x-3)(2x+9)

27 tháng 9 2017

1.\(x^3+6x^2+12xy+8=x^3+3.2x^2+3.2^2x+2^3=\left(x+2\right)^3\)

3.\(x^4+2x^3+x^2-y^2=\left(x^2\right)^2+2x^2.x+x^2-y^2\)\(=\left(x^2+x\right)^2-y^2=\left(x^2+x-y\right)\left(x^2+x+y\right)\)

k mình nha bn !!!!!!!  cái 2 bn xem lại đề đi, rồi mình giải cho 

28 tháng 9 2017

cau so 2 ne ban 

x- 4x3- 8x2+ 8x 

7 tháng 8 2018

\(3x^4-48\)

\(=\left(3x^4-6x^3\right)+\left(6x^3-12x^2\right)+\left(12x^2-24x\right)+\left(24x-48\right)\)

\(=3x^3\left(x-2\right)+6x^2\left(x-2\right)+12x\left(x-2\right)+24\left(x-2\right)\)

\(=\left(x-2\right)\left[\left(3x^3+6x^2\right)+\left(12x+24\right)\right]\)

\(=\left(x-2\right)\left[3x^2\left(x+2\right)+12\left(x+2\right)\right]\)

\(=\left(x-2\right)\left(x+2\right)\left(3x^2+12\right)\)

7 tháng 8 2018

\(x^4-8x\)

\(=x\left(x^3-8\right)\)

\(=x\left[\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(4x-8\right)\right]\)

\(=x\left[x^2\left(x-2\right)+2x\left(x-2\right)+4\left(x-2\right)\right]\)

\(=x\left(x-2\right)\left(x^2+2x+4\right)\)

4 tháng 8 2017

Phần GTNN:
Câu 1:
Ta thấy: \(M=x^2-8x+5=x^2-8x+16-11=\left(x-4\right)^2-11\)
Do \(\left(x-4\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x-4\right)^2-11\ge-11\) ( mọi x )
=> GTNN của đa thức \(M=\left(x-4\right)^2-11\) bằng -11 khi và chỉ khi:
\(\left(x-4\right)^2=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
Vậy GTNN của đa thức \(M=x^2-8x+5\) bằng -11 khi và chỉ khi x = 4.

Câu 2:
Ta thấy: \(F=2x^2+6x-4=2\left(x^2+3x-2\right)=2\left(x^2+3x+\frac{9}{4}-\frac{17}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\)
Do \(\left(x+\frac{3}{2}\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\ge\frac{-17}{4}\) ( mọi x )
\(\Rightarrow2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\ge\frac{-17}{2}\) ( mọi x )
=> GTNN của đa thức \(F=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\) bằng \(\frac{-17}{2}\) khi và chỉ khi:
\(\left(x+\frac{3}{2}\right)^2-\frac{17}{4}=\frac{-17}{4}\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=0\)
\(\Rightarrow x+\frac{3}{2}=0\)
\(\Rightarrow x=\frac{-3}{2}\)
Vậy GTNN của đa thức \(F=2x^2+6x-4\) bằng \(\frac{-17}{4}\) khi và chỉ khi \(x=\frac{-3}{2}\).

12 tháng 9 2015

Viết đề rõ chút chứ nhìn ko ra