So sánh:
a. A= \(\frac{10^8+2}{10^8-1}\); B=\(\frac{10^8}{10^8-3}\) e.A=\(\frac{10^{15}+5}{10^{15}-7}\);B=\(\frac{10^{16}+7}{10^{16}-5}\)
b. A=\(\frac{10^{15}+1}{10^{16}+1}\); B=\(\frac{10^{16}+1}{10^{17}+1}\) f.A=\(\frac{20^{10}+1}{20^{10}-1}\) ; B=\(\frac{20^{10}-1}{20^{10}-3}\)
c. A=\(\frac{10^{14}+1}{10^{15}+1}\); B=\(\frac{10^{15}+1}{10^{16}+1}\) g.A=\(\frac{-7}{10^{2013}}\) + \(\frac{-15}{10^{2014}}\); B=\(\frac{-15}{10^{2013}}\)+ \(\frac{-7}{10^{2014}}\)
d. A=\(\frac{5^{17}+1}{5^{19}+2}\); B=\(\frac{5^{20}+1}{5^{22}+1}\)
a, \(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì \(\frac{3}{10^8-1}< \frac{3}{10^8-3}\Rightarrow1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\Rightarrow A< B\)
b, \(A=\frac{10^{15}+1}{10^{16}+1}\Rightarrow10A=\frac{10\left(10^{15}+1\right)}{10^{16}+1}=\frac{10^{16}+10}{10^{16}+1}=\frac{10^{16}+1+9}{10^{16}+1}=1+\frac{9}{10^{16}+1}\)
\(B=\frac{10^{16}+1}{10^{17}+1}\Rightarrow10B=\frac{10\left(10^{16}+1\right)}{10^{17}+1}=\frac{10^{17}+10}{10^{17}+1}=\frac{10^{17}+1+9}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)
Vì \(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\Rightarrow1+\frac{9}{10^{16}+1}>1+\frac{9}{10^{17}+1}\Rightarrow10A>10B0\Rightarrow A>B\)
c, giống câu b
d, giống câu b
e, \(A=\frac{10^{15}+5}{10^{15}-7}=\frac{10^{15}-7+12}{10^{15}-7}=1+\frac{12}{10^{15}-7}\)
\(B=\frac{10^{16}+7}{10^{16}-5}=\frac{10^{16}-5+12}{10^6-5}=1+\frac{12}{10^6-5}\)
Vì \(\frac{12}{10^{15}-7}>\frac{12}{10^{16}-5}\Rightarrow1+\frac{12}{10^{15}-7}>1+\frac{12}{10^{16}-7}\Rightarrow A>B\)
f, \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\Rightarrow A< B\)
e, Ta có:
\(A-B=\left(\frac{-7}{10^{2013}}+\frac{-15}{10^{2014}}\right)-\left(\frac{-15}{10^{2013}}+\frac{-7}{10^{2014}}\right)\)
\(=\frac{-7}{10^{2013}}+\frac{-15}{10^{2014}}-\frac{-15}{10^{2013}}-\frac{-7}{10^{2014}}\)
\(=\frac{8}{10^{2013}}-\frac{8}{10^{2014}}>0\)
Vậy A > B
Phần a;b;c;d;e;f liên quan tới
\(\frac{a}{b}< \frac{a+c}{b+c}\forall a< b\) \(\frac{a}{b}>\frac{a+c}{b+c}\forall a>b\) phép trừ thì ngược lại
Giải phần g
\(A=\frac{-7}{10^{2013}}+\frac{-7}{10^{2014}}+\frac{-8}{10^{2014}}\)
\(B=\frac{-7}{10^{2013}}+\frac{-8}{10^{2013}}+\frac{-7}{10^{2014}}\)
có đcB>A
k minh nha