Biết A=x2+y2 ; B=(7x)2+(-7y)2 và x ,ykhông đồng thời bằng 0 .Tính tỉ số B/A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}A = {x^4} - 2{{\rm{x}}^2}y - {x^2} + {y^2} + y\\A = \left( {{x^4} - 2{{\rm{x}}^2}y + {y^2}} \right) + \left( {y - {x^2}} \right)\\A = {\left( {{x^2} - y} \right)^2} - \left( {{x^2} - y} \right)\\A = \left( {{x^2} - y} \right)\left( {{x^2} - y - 1} \right)\end{array}\)
Với \({x^2} - y = 6\) ta có:
\(A = 6.\left( {6 - 1} \right) = 30\)
Vậy A = 30
b) Ta có:
\(\begin{array}{l}B = {x^2}{y^2} + 2{\rm{x}}yz + {z^2}\\B = {\left( {xy} \right)^2} + 2{\rm{x}}yz + {z^2}\\B = {\left( {xy + z} \right)^2}\end{array}\)
Với xy + z = 0 nên:
\(B = {0^2} = 0\)
Vậy B = 0
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=\dfrac{16}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.\dfrac{16}{5}\\y^2=9.\dfrac{16}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\left(2.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{8\sqrt[]{5}}{5}\\y=\pm\left(3.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{12\sqrt[]{5}}{5}\end{matrix}\right.\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5}{4}y=\dfrac{5}{4}.\left(\pm\dfrac{12\sqrt[]{5}}{5}\right)=\pm3\sqrt[]{5}\)
b) \(\left|2x+3\right|=x+2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-\dfrac{5}{3}\end{matrix}\right.\)
Đính chính
Dòng cuối \(3x=-\dfrac{5}{3}\rightarrow x=-\dfrac{5}{3}\)
\(\dfrac{x+y}{x-y}\cdot A=\dfrac{x^2+2xy+y^2}{3x+2}\)
\(\Rightarrow\dfrac{x+y}{x-y}\cdot A=\dfrac{\left(x+y\right)^2}{3x+2}\)
\(\Rightarrow A=\dfrac{\left(x+y\right)^2}{3x+2}:\dfrac{x+y}{x-y}\)
\(=\dfrac{\left(x+y\right)^2}{3x+2}\cdot\dfrac{x-y}{x+y}=\dfrac{x^2-y^2}{3x+2}\)