cho A = 21+22+...+2100 ;B = 31+32+...+3100
Tìm chữ số tận cùng của A và B
thanks ai đúng mình tick cho (trình bày ra)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A=20+21+22+23+...2100
2A=21+22+...+2101
2A-A=(21+22+...+2100)-(20+21+...+2100)
A=2101-1
Mà 2101-1=(........02)-1=........01 chia 100 dư 1
Chúc bạn học tốt.
*Sửa lại đề*
A = 21+ 22+ 23+ 24 + .. + 2100
A = (21+22) + (23+ 24) +...+ (299+ 2100)
A = 2.(1+2) + 23.(1+2) + .. + 299. (1+2)
A = 2.3 + 23. 3 + .. + 299.3
A = 3 . (21 + 23 + .... + 299)
Mà 3 chia hết cho 3
=> A chia hết cho 3
Ta có
2 1 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 +...+ 2 98 + 2 99 + 2 100
= 2 1 + ( 2 2 + 2 3 + 2 4 ) + ( 2 5 + 2 6 + 2 7 ) +...+ ( 2 98 + 2 99 + 2 100 )
= 2 + 2 2 1 + 2 + 2 2 + 2 5 1 + 2 + 2 2 + . . . + 2 98 1 + 2 + 2 2
= 2 + 2 2 . 7 + 2 5 . 7 + . . . + 2 98 . 7 = 2 + 7 2 2 + 2 5 + . . . + 2 98
Mà 7 . 2 2 + 2 5 + . . . + 2 98 ⋮ 7
Nên 2 + 7 2 2 + 2 5 + . . . + 2 98 : 7 d ư 2
Lời giải:
Đặt $A=1+2^2+2^4+....+2^{100}$
$A=(1+2^2+2^4)+(2^6+2^8+2^{10})+.....+(2^{96}+2^{98}+2^{100})$
$A=(1+2^2+2^4)+2^6(1+2^2+2^4)+....+2^{96}(1+2^2+2^4)$
$=(1+2^2+2^4)(1+2^6+....+2^{96})$
$=21(1+2^6+....+2^{96})\vdots 21$
Ta có đpcm.
`#3107.101107`
Gọi biểu thức trên là A
Ta có:
\(A=1+5^2+5^4+...+5^{40}\\ =1\cdot\left(1+5^2\right)+5^4\cdot\left(1+5^2\right)+...+5^{38}\cdot\left(1+5^2\right)\\ =\left(1+5^2\right)\cdot\left(1+5^4+...+5^{38}\right)\\ =26\cdot\left(1+5^4+...+5^{38}\right)\)
Vì \(26\cdot\left(1+5^4+...+5^{38}\right)\text{ }⋮\text{ }26\)
\(\Rightarrow A\text{ }⋮\text{ }26\)
_______
Gọi biểu thức trên là B
Ta có:
\(B=1+2^2+2^4+...+2^{100}\\ =1\cdot\left(1+2^2+2^4\right)+2^6\cdot\left(1+2^2+2^4\right)+...+2^{96}\cdot\left(1+2^2+2^4\right)\\ =\left(1+2^2+2^4\right)\cdot\left(1+2^6+...+2^{96}\right)\\ =21\cdot\left(1+2^6+...+2^{96}\right)\)
Vì \(21\cdot\left(1+2^6+...+2^{96}\right)\text{ }⋮\text{ }21\)
\(\Rightarrow B\text{ }⋮\text{ }21\)
_______
Gọi biểu thức trên là C
Ta có:
\(C=1+3^2+3^4+...+3^{100}\\ =1\cdot\left(1+3^2+3^4+3^6\right)+3^6\cdot\left(1+3^2+3^4+3^6\right)+...+3^{94}\cdot\left(1+3^2+3^4+3^6\right)\\ =\left(1+3^2+3^4+3^6\right)\cdot\left(1+3^6+...+3^{94}\right)\\ =820\cdot\left(1+3^6+...+3^{94}\right)\)
Vì \(820\cdot\left(1+3^6+...+3^{94}\right)\text{ }⋮\text{ }82\)
\(\Rightarrow C\text{ }⋮\text{ }82.\)
a) \(A=1+5^2+5^4+5^6...+5^{40}\)
\(\Rightarrow A=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{38}\left(1+5^2\right)\)
\(\Rightarrow A=26+5^4.26+...+5^{38}.26\)
\(\Rightarrow A=26\left(1+5^4+...+5^{38}\right)⋮26\)
\(\Rightarrow1+5^2+5^4+5^6...+5^{40}⋮6\left(dpcm\right)\)
b) \(B=1+2^2+2^4+2^6+...+2^{100}\)
\(\Rightarrow B=\left(1+2^2+2^4\right)+2^6\left(1+2^2+2^4\right)+...+2^{96}\left(1+2^2+2^4\right)\)
\(\Rightarrow B=21+2^6.21+...+2^{96}.21\)
\(\Rightarrow B=21\left(1+2^6+...+2^{96}\right)⋮21\)
\(\Rightarrow1+2^2+2^4+2^6+...+2^{100}⋮21\left(dpcm\right)\)
Bài C tương tự bạn tự làm nhé!
Ta có : A = 2 + 22 + 23 + ..... + 2100
=> 2A = 22 + 23 + ..... + 2101
=> 2A - A = 2101 - 2
=> A = 2101 - 2
=> A = 2100 . 2 - 2
=> A = (220)5 . 2 - 2
=> A = (1048576)5 . 2 - 2 (những số có hai chữ số tận cùng là 76 dù nâng lên lũy thừa bao nhiêu chữ số
tận cùng cũng vẫn là 76)
=> A = (......76).2 - 2
=> A = (....52) - 2
=> A = (....50)
Ta có : B = 3 + 32 + ..... + 3100
=> 3B = 32 + 33 + ..... + 3101
=> 3B - A = 3101 - 3
=> 2B = 3101 - 3
=> B = \(\frac{3^{101}-3}{2}\)
=> B = \(\frac{3^{100}.3-3}{2}=\frac{\left(3^{20}\right)^5.3-3}{2}=\frac{\left(....01\right)^5.5-3}{2}=\frac{\left(....01\right).5-3}{2}=\frac{\left(......05\right)-3}{2}\)
=> B = \(\frac{\left(....2\right)}{2}=\left(....1\right)\)