cho nửa đg tròn (O) đk AB. Qua điểm C thuộc nửa đg tròn (C≠A;B). Kẻ tiếp tuyến d của nửa đg tròn. Gọi E;F là chân các đg vg kẻ từ A;B đến d. Vẽ \(CH\perp AB\) tại H.CMR:
a, CE=CF
b,AC là tia pg của góc AE
c, CH2=AE.BF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
ΔBMA nội tiếp đường tròn(B,M,A∈(O))
BA là đường kính(gt)
Do đó: ΔBMA vuông tại M(Định lí)
Xét (O) có
AB là đường kính của (O)(gt)
nên O là trung điểm của AB
Xét ΔBMA có
O là trung điểm của AB(gt)
C là trung điểm của AM(gt)
Do đó: OC là đường trung bình của ΔBMA(Định nghĩa đường trung bình của tam giác)
⇒OC//BM và \(OC=\dfrac{BM}{2}\)(Định lí 2 về đường trung bình của tam giác)
Ta có: OC//BM(cmt)
BM⊥BA(ΔBMA vuông tại M)
Do đó: OC⊥AM(Định lí 2 từ vuông góc tới song song)
Xét tứ giác OCNB có
\(\widehat{OCN}\) và \(\widehat{OBN}\) là hai góc đối
\(\widehat{OCN}+\widehat{OBN}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OCNB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét ΔNBA vuông tại B và ΔOCA vuông tại C có
\(\widehat{OAC}\) chung
Do đó: ΔNBA∼ΔOCA(g-g)
⇒\(\dfrac{AB}{AC}=\dfrac{AN}{AO}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AC\cdot AN=AO\cdot AB\)(đpcm)
c) Ta có: OC⊥AN(cmt)
mà E∈OC(gt)
nên EC⊥NA
Xét ΔNEA có
EC là đường cao ứng với cạnh NA(cmt)
AB là đường cao ứng với cạnh NE(gt)
EC cắt AB tại O(gt)
Do đó: O là trực tâm của ΔNEA(Định lí ba đường cao của tam giác)
⇒NO⊥AE(đpcm)
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
AC.BD=\(\frac{AB^2}{4}\)<=> 4AC.BD=AB^2
<=>4AC.BD=4R^2
<=> AC.BD=R^2<=>AC.BD=AO^2 (1)
<=>áp dụng tính chất 2 tiếp tuyến cắt nhau ta có AC =CM ;BD=MD ; thế vào (1) TA đc CM.MD=AO^2
Tiếp theo ta chứng minh tam giác COD vg bằng cách dựa vào tính chất 2 tiếp tuyến cắt nhau góc MDO=MBO; MCO=MAO Mà góc MAO +ABO =90 (do tam giac AMB vuông nội tiếp chắn nửa đg tròn cóa ab là đg kính.
KHI ĐÃ CHỨNG MINH ĐƯỢC TAM GIÁC COD mà có Mo là đg cao áp dụng hệ thức lượng ta có MO ^2=CM.MDHAY AO^2=CM.MD (ĐPCM)
a) Xét (O) có
\(\widehat{CDA}\) là góc nội tiếp chắn \(\stackrel\frown{CA}\)
\(\widehat{ABC}\) là góc nội tiếp chắn \(\stackrel\frown{CA}\)
Do đó: \(\widehat{CDA}=\widehat{ABC}\)(Hệ quả góc nội tiếp)
hay \(\widehat{MDA}=\widehat{MBC}\)
Xét ΔMAD và ΔMCB có
\(\widehat{MDA}=\widehat{MBC}\)(cmt)
\(\widehat{AMD}\) chung
Do đó: ΔMAD\(\sim\)ΔMCB(g-g)
Suy ra: \(\dfrac{MA}{MC}=\dfrac{MD}{MB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(MA\cdot MB=MC\cdot MD\)(đpcm)
Vì AB là dây đi qua tâm O \(\Rightarrow AB\) là đường kính của \(\left(O,R\right)\)
\(\Rightarrow\angle ACB=90\Rightarrow\Delta ABC\) vuông tại C
b) CD cắt AB tại E
Vì C và D đối xứng với nhau qua AB \(\Rightarrow\angle ACD=\angle ADC\)
mà \(\angle ACD=\angle ACE=90-\angle CAB=\angle CBA\)
\(\Rightarrow ACBD\) nội tiếp \(\Rightarrow D\in\left(O,R\right)\)