K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

a) xét tứ giác BNMC ta có : BNC = 90 (giả thiết)

BMC = 90 (giả thiết)

mà 2 góc này cùng chắng cung BC của tứ giác BNMC

\(\Rightarrow\) tứ giác BNMC nội tiếp (đpcm)

b) xét tứ giác ANHM ta có : ANH = 90 (giả thiết)

AMH = 90 (giả thiết)

\(\Rightarrow\) ANH + AMH = 180

mà 2 góc này ở vị trí đối nhau \(\Rightarrow\) tứ giác ANHM nội tiếp (đpcm)

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: góc AHG=góc BHD=90 độ-góc HBD=góc ACB

góc AGH=1/2*sđ cung AB=góc ACB

=>góc AHG=góc AGH

=>ΔAGH cân tại A

1/cho tam giac ABC can tai A ( goc A<900) cac duong cao AD va BE cat nhau tai H ( D thuoc BC, E thuoc AC) a/CM tu giac DHEC noi tiep duong tron b/chung minh ED=BD va goc HBD=goc HCDc/Goi O la tam cua duong tron ngoai tiep tam giac AHE.CM rang ED la tiep tuyen cua duong tron (O)2/cho ram giac ABC co ba goc nhon noi tiep duong tron (O).Hai duong cao AD va BJ cat nhau tai Ha/CM;tu giac CDHK noi tiep b/ve d.kinh AF .tia AD cat (O)tai E.CM BC//EFc/CMR; AD/HD=BD.CDb/goi I la trung diem cua BC...
Đọc tiếp

1/cho tam giac ABC can tai A ( goc A<900) cac duong cao AD va BE cat nhau tai H ( D thuoc BC, E thuoc AC) 

a/CM tu giac DHEC noi tiep duong tron 

b/chung minh ED=BD va goc HBD=goc HCD

c/Goi O la tam cua duong tron ngoai tiep tam giac AHE.CM rang ED la tiep tuyen cua duong tron (O)

2/cho ram giac ABC co ba goc nhon noi tiep duong tron (O).Hai duong cao AD va BJ cat nhau tai H

a/CM;tu giac CDHK noi tiep 

b/ve d.kinh AF .tia AD cat (O)tai E.CM BC//EF

c/CMR; AD/HD=BD.CD

b/goi I la trung diem cua BC .CMR: H,I,F thang hang

3/cho tam giac nhon  ABC noi tiep duong tron tam O,duong cao BHva CK lan luot cat duong tron tai Eva F

a.CMR: tu giac BKHC noi tiep 

b.CM: A la diem chinh giua cu cung EF 

c.CM:OA//EF

d.CM:EF//HK

4/cho tam giac ABC vuong tai A co AB<AC.Ke duong cao AH.Tren HC lay diem D sao cho HD=Hb

a/CMR:tap giac ABD can

b/Tu C ke CF vuong goc voi AD keo dai tai E

Chung minh tu giac AHEC noi tiep duoc trong 1 duong tron .Xac dinh tam O cua duong tron nay

c/CM:AB.ED=HB.CD 

 

0
3 tháng 3 2020

A B C D F E H J K

Hướng dẫn: 

Ta chứng minh: ^CBJ + ^JKC = 180o 

Có: ^CBJ + ^JKC =  \(\frac{1}{2}\).^CBA + ^JKD + ^DKC =  (a)

+) \(\Delta\)BFD ~  \(\Delta\)ECD  (1)  => \(\Delta\)JFD ~ \(\Delta\)KDC  => \(\Delta\)DKJ ~ \(\Delta\)DCF (2)

Từ (2) => ^JKD = ^FCD 

K là giao điểm 3 đường phân giác của \(\Delta\)DEC => DKC = 90o + ^DEC:2

(a) = \(\frac{\widehat{CBA}}{2}+\widehat{FCB}+90^o+\frac{\widehat{DEC}}{2}\)

(1) => ^DEC = ^DBF = ^CBA 

(a) = \(\frac{\widehat{CBA}}{2}+\widehat{FCB}+90^o+\frac{\widehat{CBA}}{2}\)

=  \(\widehat{CBA}+\widehat{FCB}+90^o=180^o\)

=> BJKC nội tiếp