Cho đ/tròn (O;R) nội tiếp tam giác ABC với BC tại D.Vẽ đ/kính DE;AE cắt BC tại M.C/m BD=CM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác MAOB có
\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối
\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét (O) có
\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)
\(\widehat{CAM}\) là góc tạo bởi dây cung CA và tiếp tuyến AM
Do đó: \(\widehat{ADC}=\widehat{CAM}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)
hay \(\widehat{MDA}=\widehat{MAC}\)
Xét ΔMDA và ΔMAC có
\(\widehat{MDA}=\widehat{MAC}\)(cmt)
\(\widehat{AMD}\) là góc chung
Do đó: ΔMDA∼ΔMAC(g-g)
⇔\(\dfrac{MD}{MA}=\dfrac{MA}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)
⇔\(MA^2=MC\cdot MD\)(đpcm)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔOAM vuông tại A có AH là đường cao ứng với cạnh huyền OM, ta được:
\(MA^2=MH\cdot MO\)(2)
Từ (1) và (2) suy ra \(MH\cdot MO=MC\cdot MD\)(đpcm)
c) để chứng minh EC là tiếp tuyến:
chứng minh tứ giác OECH nội tiếp thì ta sẽ có góc OHE=OCE=90o(đpcm)
=> cần chứng minh tứ giác OECH nội tiếp:
ta có: DOC=DHC (ccc CD)
xét MHC=MDO (tam giác MCH~MOD)= OCD (vì DO=OC)=OHD (cùng chắn OD) => HA là phân giác CHD
DOC=DHC => 1/2 DOC= 1/2 DHC =COE=CHE
mà COE với CHE cùng chắn cung CE trong tứ giác OHCE nên tứ giác đấy nội tiếp => xong :))))
a: Xét tứ giác OCMA có
góc OCM+góc OAM=180 độ
nên OCMA là tứ giác nội tiếp
b: Xét (O) có
MC,MA là tiếp tuyến
nên MC=MA
mà OC=OA
nên OM là trung trực của AC
=>OM vuông góc với AC tại trung điểm của CA
Xét ΔABC có O,I lần lượt là trung điểm của AB,AC
nên OI là đường trung bình
=>OI=1/2BC
=>BC=2IO
a: Sửa đề: Gọi I là giao điểm của OD và BE
Xét (O) có
DB,DE là tiếp tuyến
Do đó: DB=DE
=>D nằm trên đường trung trực của BE(1)
Ta có: OB=OE
nên O nằm trên đường trung trực của BE(2)
Từ (1) và (2) suy ra OD là đường trung trực của BE
=>OD\(\perp\)BE tại trung điểm của BE
=>OD\(\perp\)BE tại I và I là trung điểm của BE
Xét ΔDBO vuông tại B có BI là đường cao
nên \(DI\cdot DO=DB^2\left(3\right)\)
Xét (O) có
ΔBAC nội tiếp
BC là đường kính
Do đó: ΔBAC vuông tại A
=>BA\(\perp\)AC tại A
=>BA\(\perp\)DC tại A
Xét ΔDBC vuông tại B có BA là đường cao
nên \(DA\cdot DC=DB^2\left(4\right)\)
Từ (3) và (4) suy ra \(DA\cdot DC=DI\cdot DO\)
b: Gọi giao điểm của CE với BD là M
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)EC tại E
=>BE\(\perp\)MC tại E
=>ΔBEM vuông tại E
=>\(\widehat{BEM}=90^0\)
Xét ΔDBE có DB=DE
nên ΔDBE cân tại D
=>\(\widehat{DBE}=\widehat{DEB}\)
Ta có: \(\widehat{DBE}+\widehat{DME}=90^0\)(ΔMEB vuông tại E)
\(\widehat{DEB}+\widehat{DEM}=\widehat{MEB}=90^0\)
mà \(\widehat{DBE}=\widehat{DEB}\)
nên \(\widehat{DME}=\widehat{DEM}\)
=>ΔDEM cân tại D
=>DE=DM
mà DE=DB
nên DB=DM(5)
Ta có: EH\(\perp\)BC
MB\(\perp\)BC
Do đó: EH//BM
Xét ΔCDB có GH//DB
nên \(\dfrac{GH}{DB}=\dfrac{CG}{CD}\left(6\right)\)
Xét ΔCMD có EG//MD
nên \(\dfrac{EG}{MD}=\dfrac{CG}{CD}\left(7\right)\)
Từ (5),(6),(7) suy ra \(\dfrac{GH}{DB}=\dfrac{EG}{MD}\)
mà DB=MD
nên GH=EG
=>G là trung điểm của EH
Xét ΔEHB có
I,G lần lượt là trung điểm của EB,EH
=>IG là đường trung bình của ΔEHB
=>IG//HB
mà H\(\in\)BC
nên IG//BC