K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2016

Đoạn OA lấy điểm B bất kì hả bạn? 

14 tháng 1 2016

uh điểm b bất kì đó bạn

a) Xét tứ giác MAOB có

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có 

\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{CAM}\) là góc tạo bởi dây cung CA và tiếp tuyến AM

Do đó: \(\widehat{ADC}=\widehat{CAM}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)

hay \(\widehat{MDA}=\widehat{MAC}\)

Xét ΔMDA và ΔMAC có 

\(\widehat{MDA}=\widehat{MAC}\)(cmt)

\(\widehat{AMD}\) là góc chung

Do đó: ΔMDA∼ΔMAC(g-g)

\(\dfrac{MD}{MA}=\dfrac{MA}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(MA^2=MC\cdot MD\)(đpcm)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔOAM vuông tại A có AH là đường cao ứng với cạnh huyền OM, ta được:

\(MA^2=MH\cdot MO\)(2)

Từ (1) và (2) suy ra \(MH\cdot MO=MC\cdot MD\)(đpcm)

10 tháng 4 2022

c) để chứng minh EC là tiếp tuyến:

chứng minh tứ giác OECH nội tiếp thì ta sẽ có góc OHE=OCE=90o(đpcm)

=> cần chứng minh tứ giác OECH nội tiếp:

ta có: DOC=DHC (ccc CD)

xét MHC=MDO (tam giác MCH~MOD)= OCD (vì DO=OC)=OHD (cùng chắn OD) => HA là phân giác CHD

DOC=DHC => 1/2 DOC= 1/2 DHC =COE=CHE

mà COE với CHE cùng chắn cung CE trong tứ giác OHCE nên tứ giác đấy nội tiếp => xong :))))

a: Xét tứ giác OCMA có

góc OCM+góc OAM=180 độ

nên OCMA là tứ giác nội tiếp

b: Xét (O) có

MC,MA là tiếp tuyến

nên MC=MA

mà OC=OA

nên OM là trung trực của AC

=>OM vuông góc với AC tại trung điểm của CA

Xét ΔABC có O,I lần lượt là trung điểm của AB,AC

nên OI là đường trung bình

=>OI=1/2BC

=>BC=2IO

a: Sửa đề: Gọi I là giao điểm của OD và BE

Xét (O) có

DB,DE là tiếp tuyến

Do đó: DB=DE

=>D nằm trên đường trung trực của BE(1)

Ta có: OB=OE

nên O nằm trên đường trung trực của BE(2)

Từ (1) và (2) suy ra OD là đường trung trực của BE

=>OD\(\perp\)BE tại trung điểm của BE

=>OD\(\perp\)BE tại I và I là trung điểm của BE

Xét ΔDBO vuông tại B có BI là đường cao

nên \(DI\cdot DO=DB^2\left(3\right)\)

Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

=>BA\(\perp\)AC tại A

=>BA\(\perp\)DC tại A

Xét ΔDBC vuông tại B có BA là đường cao

nên \(DA\cdot DC=DB^2\left(4\right)\)

Từ (3) và (4) suy ra \(DA\cdot DC=DI\cdot DO\)

b: Gọi giao điểm của CE với BD là M

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)EC tại E

=>BE\(\perp\)MC tại E

=>ΔBEM vuông tại E

=>\(\widehat{BEM}=90^0\)

Xét ΔDBE có DB=DE

nên ΔDBE cân tại D

=>\(\widehat{DBE}=\widehat{DEB}\)

Ta có: \(\widehat{DBE}+\widehat{DME}=90^0\)(ΔMEB vuông tại E)

\(\widehat{DEB}+\widehat{DEM}=\widehat{MEB}=90^0\)

mà \(\widehat{DBE}=\widehat{DEB}\)

nên \(\widehat{DME}=\widehat{DEM}\)

=>ΔDEM cân tại D

=>DE=DM

mà DE=DB

nên DB=DM(5)

Ta có: EH\(\perp\)BC

MB\(\perp\)BC

Do đó: EH//BM

Xét ΔCDB có GH//DB

nên \(\dfrac{GH}{DB}=\dfrac{CG}{CD}\left(6\right)\)

Xét ΔCMD có EG//MD

nên \(\dfrac{EG}{MD}=\dfrac{CG}{CD}\left(7\right)\)

Từ (5),(6),(7) suy ra \(\dfrac{GH}{DB}=\dfrac{EG}{MD}\)

mà DB=MD

nên GH=EG

=>G là trung điểm của EH

Xét ΔEHB có

I,G lần lượt là trung điểm của EB,EH

=>IG là đường trung bình của ΔEHB

=>IG//HB

mà H\(\in\)BC

nên IG//BC