K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E 1 1 2 2 1 3 2

Bài làm

* Từ B kẻ đường thẳng đi qua E . Và song song với AD

Nối AE

Vì AB // CD ( gt )

=> AB // DE 

=> \(\widehat{A_1}=\widehat{E_1}\)( Hai góc so le trong )

BE // AD ( cmt )

=> \(\widehat{A_2}=\widehat{E_2}\)( Hai góc so le trong )

Xét tam giác ABE và tam giác EDA có:

\(\widehat{A_1}=\widehat{E_1}\)( cmt )

Cạnh AE chung 

\(\widehat{A_2}=\widehat{E_2}\)( cmt )

=> Tam giác ABE = tam giác EDA ( g.c.g )

=> AD = BE. ( hai cạnh tương ứng ) ( đpcm )

* Vì AB // CD

=> AB // EC

=> \(\widehat{B_1}=\widehat{E_3}\)( Hai góc so le trong )

Vì CD = 2AB

=> AB = CD / 2

=> AB = DE =EC

Xét tam giác AEB và tam giác BCE có:

AB = EC ( cmt )

\(\widehat{B_1}=\widehat{E_3}\)( cmt )

Cạnh BE chung

=> Tam giác AEB = tam giác BCE ( c.g.c )

=> \(\widehat{B_2}=\widehat{E_2}\)( Hai góc tương ứng )

Mà hai góc này ở vị trí so le trong

=> AE // BC ( đpcm )
# Học tốt #

29 tháng 7 2021

Vì AB//CD (gt) -> \(\widehat{ABD}=\widehat{BDE}\) ( 2 góc so le trong )

Xét \(\Delta\)ABI và \(\Delta\)EDI có:

\(\widehat{ABD}=\widehat{BDE}\left(cmt\right)\)

DI=IB (I là trung điểm của BD)

\(\widehat{AIB}=\widehat{DIE}\) ( 2 góc đối đỉnh )

=> \(\Delta\)ABI = \(\Delta\)EDI ( g.c.g )

=> AB = DE ( 2 cạnh tương ứng ) (1)

Mà AB//DE ( AB//DC, E thuộc DC ) (2)

Từ (1) và (2) -> ABED là hình bình hành

-> AE cắt DB tại trung điểm mỗi đường ( tính chất hình bình hành ) mà I là trung điểm của BD

-> I là trung điểm AE

Chúc bạn học tốt!!!

 

 

a: Xét tứ giác ABPD có 

AB//PD

AB=PD

Do đó: ABPD là hình bình hành

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình

=>MN//AC và MN=AC/2(1)

Xét ΔADC có 

Q là trung điểm của AD
P là trung điểm của CD

Do đó: QP là đường trung bình

=>QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

b: Để MNPQ là hình thoi thì MN=MQ

hay AC=BD

30 tháng 8 2019

Câu hỏi của Hồ Phong Thư - Toán lớp 8 - Học toán với OnlineMath

Sửa đề: M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA

a: AB//DC

\(P\in DC\)

Do đó: AB//DP

AB=DC/2

DP=DC/2=PC

Do đó: AB=DP=CP

Xét tứ giác ABPD có

AB//PD

AB=PD

Do đó: ABPD là hình bình hành

b: Xét ΔABC có

M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình của ΔBAC

=>MN//AC và MN=AC/2(1)

Xét ΔADC có

Q,P lần lượt là trung điểm của DA,DC

=>QP là đường trung bình

=>QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

Xét tứ giác MNPQ có

MN//PQ

MN=PQ

Do đó: MNPQ là hình bình hành

c: ABPD là hình bình hành

=>AP cắt BD tại trung điểm của mỗi đường

=>E là trung điểm của AP và BD

Xét ΔADP có

Q,E lần lượt là trung điểm của AD,AP

=>QE là đường trung bình

=>QE//DP

=>QE//DC

Xét ΔBDC có

E,N lần lượt là trung điểm của BD,BC

=>EN là đường trung bình

=>EN//DC

EN//DC

QE//DC

mà QE và EN có điểm chung là E

nên Q,E,N thẳng hàng

21 tháng 3 2019

Vì CD = 2AB (gt) nên AB = 1/2 CD

Vì E là trung điểm của CD nên DE = EC = 1/2 CD

Suy ra: AB = DE = EC

Hình thang ABCD có đáy AB = EC nên hai cạnh bên AE và BC song song với nhau

Xét △ AEB và  △ CBE, ta có:

∠ (ABE) =  ∠ ( BEC)(So le trong)

∠ (AEB) = (EBC) (so le trong)

BE cạnh chung

⇒ △ AEB = △ CBE (g.c.g) (1)

Hình thang ABCE có đáy AB = DE nên hai cạnh bên AD và BE song song với nhau

Xét  △ AEB và  △ EAD, ta có:

∠ (BAE) =  ∠ (AED)(so le trong)

∠  (AEB) =  ∠ (EAD) (so le trong)

AE cạnh chung

⇒ △  AEB = △ EAD(g.c.g) (2)

Từ (1) và (2) suy ra: ΔAEB = ΔCBE = ΔEAD

Vậy ba tam giác  △ AEB;  △ CBE và  △ EAD đôi một đồng dạng