Cho hình thang ABCD(AB//CD) có CD=2AB. Gọi E là trung điểm CD> Chứng minh AE//BC;AD=BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AB//CD (gt) -> \(\widehat{ABD}=\widehat{BDE}\) ( 2 góc so le trong )
Xét \(\Delta\)ABI và \(\Delta\)EDI có:
\(\widehat{ABD}=\widehat{BDE}\left(cmt\right)\)
DI=IB (I là trung điểm của BD)
\(\widehat{AIB}=\widehat{DIE}\) ( 2 góc đối đỉnh )
=> \(\Delta\)ABI = \(\Delta\)EDI ( g.c.g )
=> AB = DE ( 2 cạnh tương ứng ) (1)
Mà AB//DE ( AB//DC, E thuộc DC ) (2)
Từ (1) và (2) -> ABED là hình bình hành
-> AE cắt DB tại trung điểm mỗi đường ( tính chất hình bình hành ) mà I là trung điểm của BD
-> I là trung điểm AE
Chúc bạn học tốt!!!
a: Xét tứ giác ABPD có
AB//PD
AB=PD
Do đó: ABPD là hình bình hành
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
hay AC=BD
Sửa đề: M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA
a: AB//DC
\(P\in DC\)
Do đó: AB//DP
AB=DC/2
DP=DC/2=PC
Do đó: AB=DP=CP
Xét tứ giác ABPD có
AB//PD
AB=PD
Do đó: ABPD là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình của ΔBAC
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q,P lần lượt là trung điểm của DA,DC
=>QP là đường trung bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
Do đó: MNPQ là hình bình hành
c: ABPD là hình bình hành
=>AP cắt BD tại trung điểm của mỗi đường
=>E là trung điểm của AP và BD
Xét ΔADP có
Q,E lần lượt là trung điểm của AD,AP
=>QE là đường trung bình
=>QE//DP
=>QE//DC
Xét ΔBDC có
E,N lần lượt là trung điểm của BD,BC
=>EN là đường trung bình
=>EN//DC
EN//DC
QE//DC
mà QE và EN có điểm chung là E
nên Q,E,N thẳng hàng
Vì CD = 2AB (gt) nên AB = 1/2 CD
Vì E là trung điểm của CD nên DE = EC = 1/2 CD
Suy ra: AB = DE = EC
Hình thang ABCD có đáy AB = EC nên hai cạnh bên AE và BC song song với nhau
Xét △ AEB và △ CBE, ta có:
∠ (ABE) = ∠ ( BEC)(So le trong)
∠ (AEB) = ∠ (EBC) (so le trong)
BE cạnh chung
⇒ △ AEB = △ CBE (g.c.g) (1)
Hình thang ABCE có đáy AB = DE nên hai cạnh bên AD và BE song song với nhau
Xét △ AEB và △ EAD, ta có:
∠ (BAE) = ∠ (AED)(so le trong)
∠ (AEB) = ∠ (EAD) (so le trong)
AE cạnh chung
⇒ △ AEB = △ EAD(g.c.g) (2)
Từ (1) và (2) suy ra: ΔAEB = ΔCBE = ΔEAD
Vậy ba tam giác △ AEB; △ CBE và △ EAD đôi một đồng dạng
A B C D E 1 1 2 2 1 3 2
Bài làm
* Từ B kẻ đường thẳng đi qua E . Và song song với AD
Nối AE
Vì AB // CD ( gt )
=> AB // DE
=> \(\widehat{A_1}=\widehat{E_1}\)( Hai góc so le trong )
BE // AD ( cmt )
=> \(\widehat{A_2}=\widehat{E_2}\)( Hai góc so le trong )
Xét tam giác ABE và tam giác EDA có:
\(\widehat{A_1}=\widehat{E_1}\)( cmt )
Cạnh AE chung
\(\widehat{A_2}=\widehat{E_2}\)( cmt )
=> Tam giác ABE = tam giác EDA ( g.c.g )
=> AD = BE. ( hai cạnh tương ứng ) ( đpcm )
* Vì AB // CD
=> AB // EC
=> \(\widehat{B_1}=\widehat{E_3}\)( Hai góc so le trong )
Vì CD = 2AB
=> AB = CD / 2
=> AB = DE =EC
Xét tam giác AEB và tam giác BCE có:
AB = EC ( cmt )
\(\widehat{B_1}=\widehat{E_3}\)( cmt )
Cạnh BE chung
=> Tam giác AEB = tam giác BCE ( c.g.c )
=> \(\widehat{B_2}=\widehat{E_2}\)( Hai góc tương ứng )
Mà hai góc này ở vị trí so le trong
=> AE // BC ( đpcm )
# Học tốt #