K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

a) Xét \(\Delta ABD\)\(\Delta ABE\) có:

\(\widehat{BAE}\) chung; \(\widehat{ABD}=\widehat{OBE}\) (cùng phụ với \(\widehat{OBD}\))

\(\Rightarrow\Delta ABD\infty\Delta AEB\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AE}=\dfrac{AD}{AB}\left(1\right)\Leftrightarrow AB^2=AE.AD\)

\(AB=DE\left(=2R\right)\) \(\Rightarrow DE^2=AE.AD\left(đpcm\right)\)

(1) \(\Leftrightarrow\dfrac{AE}{AB}=\dfrac{AB}{AD}\)\(AD=AC;DE=AB\)

\(\Rightarrow\)\(\dfrac{AE}{AB}=\dfrac{AD+DE}{AB}=\dfrac{AC+AB}{AB}=\dfrac{AB}{AD}=\dfrac{AB}{AC}\)

\(\Leftrightarrow\dfrac{AC+AB}{AB}=\dfrac{AB}{AC}\)

\(\Leftrightarrow\dfrac{AC+AB-AB}{AB}=\dfrac{AB-AC}{AC}\) (t\c tỉ lệ thức)

\(\Leftrightarrow\dfrac{AC}{AB}=\dfrac{BC}{AC}\Leftrightarrow AC^2=AB.BC\)(đpcm)

b) Cần c\m \(\Delta ADP\infty\Delta ODB\left(g.g\right)\) , \(\Delta MAD\infty\Delta NOD\left(g.g\right)\)

rồi suy ra \(\dfrac{DP}{BD}=\dfrac{MD}{ND}\left(=\dfrac{AD}{OD}\right)\)\(\widehat{MDP}=\widehat{NDB}\left(đđ\right)\) là xong!

Câu b còn dễ hơn câu a

30 tháng 11 2021

2: Xét tứ giác OBCD có 

\(\widehat{OBC}+\widehat{ODC}=180^0\)

Do đó: OBCD là tứ giác nội tiếp

hay O,B,C,D cùng thuộc một đường tròn

11 tháng 11 2021

loading...

 

11 tháng 11 2021

loading...  loading...  

9 tháng 4 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Ta có: OM = OA + AM = R + R = 2R

Xét tam giác MCO vuông tại C, CH là đường cao có:

MO 2 = MC 2 + OC 2

Đề kiểm tra Toán 9 | Đề thi Toán 9

CH.OM = CM.CO

Đề kiểm tra Toán 9 | Đề thi Toán 9

Lại có: CD = 2CH ⇒ CD = R 3

Tam giác CDE nội tiếp (O) có CE là đường kính nên ΔCDE vuông tại D

Theo định lí Py ta go ta có:

CE 2 = CD 2 + DE 2

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét \(\Delta\)AOB vuông tại B có 

\(\cos\widehat{AOB}=\dfrac{OB}{OA}\)(Tỉ số lượng giác góc nhọn)

\(\Leftrightarrow\cos\widehat{AOB}=\dfrac{R}{2\cdot R}=\dfrac{1}{2}\)

hay \(\widehat{AOB}=60^0\)

Vậy: \(\widehat{AOB}=60^0\)

b) Ta có: ΔOBA vuông tại B(OB⊥BA)

nên \(\widehat{AOB}+\widehat{BAO}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{BAO}=30^0\)

Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AO là tia phân giác của \(\widehat{BAC}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{BAO}=\widehat{CAO}\)

hay \(\widehat{CAO}=30^0\)

Ta có: \(\widehat{CAO}+\widehat{MAO}=\widehat{MAC}\)(Vì tia AO nằm giữa hai tia AM,AC)

hay \(\widehat{MAO}=60^0\)

Xét ΔMOA có 

\(\widehat{MAO}=60^0\)(cmt)

\(\widehat{MOA}=60^0\)(\(\widehat{AOB}=60^0\))

Do đó: ΔMOA đều(Dấu hiệu nhận biết tam giác đều)

⇒MA=MO(đpcm)

c) Ta có: ΔOBA vuông tại B(OB⊥BA)

mà BI là đường trung tuyến ứng với cạnh huyền OA(I là trung điểm của OA)

nên \(BI=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AI=\dfrac{OA}{2}\)(I là trung điểm của OA)

nên BI=AI(1)

Ta có: ΔOCA vuông tại C(OC⊥CA)

mà CI là đường trung tuyến ứng với cạnh huyền OA(I là trung điểm của OA)

nên \(CI=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AI=\dfrac{AO}{2}\)(I là trung điểm của OA)

nên CI=AI(2)

Từ (1) và (2) suy ra IA=IB=IC

hay I là giao điểm 3 đường trung trực của ΔABC

Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: \(\widehat{BAC}=\widehat{BAO}+\widehat{CAO}\)(tia AO nằm giữa hai tia AB,AC)

hay \(\widehat{BAC}=60^0\)

Xét ΔABC có AB=AC(cmt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)(cmt)

nên ΔABC đều(Dấu hiệu nhận biết tam giác đều)

Xét ΔABC đều có I là giao điểm 3 đường trung trực của tam giác(cmt)

mà trong tam giác đều, giao điểm 3 đường trung trực cũng chính là giao điểm của 3 đường phân giác(Định lí tam giác đều)

nên I là giao điểm của 3 đường phân giác trong ΔBAC

hay I là tâm đường tròn nội tiếp ΔABC(đpcm)