K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2017

cg ;ơhgyf

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔAHB∼ΔCAB(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)(đpcm)

b) Ta có: BC=BH+HC(H nằm giữa B và C)

nên BC=4+9=13(cm)

Ta có: \(AB^2=BH\cdot BC\)(cmt)

\(\Leftrightarrow AB^2=4\cdot13\)

hay \(AB=2\sqrt{13}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=13^2-\left(2\sqrt{13}\right)^2=117\)

hay \(AC=3\sqrt{13}\left(cm\right)\)

5 tháng 7 2021

a)

Trong tam giác ABC có : 

\(AH^2=BH.CH=4.9=36\Rightarrow AH=6\left(cm\right)\)

Áp dụng Pitago trong tam giác AHB vuông tại H ta có :

\(AB^2=AH^2+BH^2=6^2+4^2=52=BH.BC=4\left(9+4\right)\)

(đpcm)

b)

\(AB=\sqrt{52}=2\sqrt{13}\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-52}=3\sqrt{13}\)

30 tháng 8 2021

Xét tam giác AHB vuông tại H ta có:

AH^2 = AB^2 - BH^2

=> AH^2 = 36 - 12,96 = 23,04

=> AH = 4,8 (cm)

Gọi độ dài CH là x (cm), AC là y (cm)

Xét tam giác AHC vuông tại H, ta có:

y^2 = x^2 + 4,8^2 = x^2 + 23,04 (1)

Xét tam giác ABC vuông tại A ta có:

y^2 = (3,6 + x)^2 - 6^2 = 12,96 + 7,2x + x^2 - 36 = x^2 + 7,2x - 23,04 (2)

(1),(2) => x^2 + 7,2x - 23,04 = x^2 +23,04

=> 7,2x = 46,08

=> x = 6,4 (cm)

Hay CH = 6,4 cm

=> y = 8 (cm)

Hay AC = 8 cm

BC = BH + CH = 3,6 + 6,4 = 10 (cm)

Vậy BC = 10 cm; AH = 4,8cm; CH = 6,4 cm; AC = 8 cm

 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)

hay AH=4,8(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=6,4\left(cm\right)\)

\(\Leftrightarrow BC=10\left(cm\right)\)

hay AC=8(cm)

a: Xét ΔHCA vuông tại H và ΔACB vuông tại A có

\(\widehat{C}\) chung

Do đó: ΔHCA đồng dạng với ΔACB

b: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CB=CA^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

c: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{6}=\dfrac{CD}{8}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=10cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

=>\(BD=\dfrac{30}{7}\left(cm\right);CD=\dfrac{40}{7}\left(cm\right)\)

26 tháng 9 2021

Ta có: \(AH^2=HB.HC\Rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\)

Xét tam giác AHB và tam giác CHA có:

\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(\dfrac{AH}{HB}=\dfrac{HC}{AH}\)

\(\Rightarrow\Delta AHB\sim\Delta CHA\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAH}=\widehat{HCA}\)

Mà \(\widehat{HCA}+\widehat{HAC}=90^0\)(ΔHAC vuông tại H)

\(\Rightarrow\widehat{BAH}+\widehat{HAC}=90^0\)

\(\Rightarrow\widehat{BAC}=90^0\left(đpcm\right)\)

b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)

a: Đề sai rồi bạn

13 tháng 2 2022

a.=> BC = BH + CH = 1 + 3 = 4 cm

áp dụng định lý pitago vào tam giác vuông AHB

\(AB^2=HB^2+AH^2\)

\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)

áp dụng định lí pitago vào tam giác vuông AHC

\(AC^2=AH^2+HC^2\)

\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Lời giải:

a/ Tứ giác $AEHF$ có 3 góc vuông: $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hình chữ nhật.

$\Rightarrow AH=EF$

b/ $HF=AE$ (do $AEHF$ là hcn) 

Xét tam giác $AEH$ và $AHB$ có:

$\widehat{A}$ chung

$\widehat{AEH}=\widehat{AHB}=90^0$

$\Rightarrow \triangle AEH\sim \triangle AHB$ (g.g)

$\Rightarrow \frac{AE}{AH}=\frac{AH}{AB}$

$\Rightarrow AE=\frac{AH^2}{AB}=\frac{AB^2-BH^2}{AB}=\frac{6^2-3,6^2}{6}=3,84$ (cm)

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Hình vẽ:

23 tháng 1 2022

a, Theo định lí Pytago tam giác ABH vuông tại H

\(AB=\sqrt{BH^2+AH^2}=\sqrt{5}cm\)

Theo định lí Pytago tam giác AHC vuông tại H

\(AC=\sqrt{AH^2+HC^2}=\sqrt{4+9}=\sqrt{13}\)cm 

-> BC = HB + HC = 4 cm 

b, Ta có tam giacs ABC đều mà BH là đường cao hay BH đồng thời là đường trung tuyến 

=> AH = AC/2 = 5/2 

Theo định lí Pytago tam giác ABH vuông tại H

\(BH=\sqrt{AB^2-AH^2}=\dfrac{5\sqrt{3}}{2}cm\)