Cho tam giác ABC góc A = 90 độ,AB=8cm;AC=15cm;BC=17cm
Gọi I là giao điểm của 3 tia phân giác của tam giác ABC.Tính khoảng cách từ điểm I đến các cạnh của tam giác
Nhanh nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=5cm\)
Theo định lí Pytago tam giác MNP vuông tại N
\(NP=\sqrt{MP^2-MN^2}=6cm\)
b, Xét tam giác ABC và tam giác NPM có
^BAC = ^PNM = 900
\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)
Vậy tam giác ABC ~ tam giác NPM ( c.g.c )
a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có
AB/NP=AC/NM
Do đó: ΔABC\(\sim\)ΔNPM
a) Xét \(\Delta ABI\) và \(\Delta DBI:\)
AB = DB (gt).
\(\widehat{ABI}=\widehat{DBI}\) (BI là phân giác \(\widehat{ABC}).\)
BI chung.
\(\Rightarrow\Delta ABI=\Delta DBI\left(c-g-c\right).\\ \Rightarrow\widehat{BAI}=\widehat{BDI}=90^o.\\ \Rightarrow DI\perp BC.\)
b) Xét \(\Delta BCE:\)
ED là đường cao \(\left(ED\perp BC\right).\)
CA là đường cao \(\left(CA\perp AB\right).\)
I là giao điểm của ED và CA.
\(\Rightarrow\) I là trực tâm.
\(\Rightarrow\) BI là đường cao.
Xét \(\Delta BCE:\)
BI là đường cao (cmt).
BI là phân giác (gt).
\(\Rightarrow\) \(\Delta BCE\) cân tại B.
d) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow10^2=8^2+AC^2.\\ \Leftrightarrow AC=6\left(cm\right).\)
mik chx hok đường cao và trực tâm nếu câu b bn còn cách giải kahcs thì mik cảm ơn
Ta có \(\widehat{A}=90^0\Rightarrow\Delta ABC\) vuông tại \(A\)
\(a,\widehat{C}=90^0-\widehat{B}=30^0\\ AC=\tan B\cdot AB=\tan60^0\cdot8=8\sqrt{3}\left(cm\right)\\ BC=\dfrac{AB}{\sin C}=\dfrac{8}{\sin30^0}=16\left(cm\right)\\ b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot8\cdot8\sqrt{3}=32\sqrt{3}\left(cm^2\right)\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
=>\(\widehat{B}\simeq53^0\)
=>\(\widehat{C}\simeq37^0\)
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{10}{7}\)
=>\(DB=\dfrac{30}{7}\left(cm\right);DC=\dfrac{40}{7}\left(cm\right)\)
a- Áp dụng định lí pitago vào tam giác ABC vuông tại A .
\(BC=\sqrt{AB^2+AC^2}=17\left(cm\right)\)
b, Ta có khoảng các từ I đến các cạnh là như nhau .
Mà \(S=\dfrac{1}{2}AB.AC=d_{\left(I,AB\right)}.p=60=d_{\left(I,AB\right)}.20\)
=> Khoảng cách từ I đến các cạnh là : \(\dfrac{60}{20}=3\left(cm\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
Suy ra: BH/BA=BA/BC
hay \(BA^2=BH\cdot BC\)
b: \(AH=\sqrt{HB\cdot HC}=6\left(cm\right)\)
\(AB=\sqrt{BH\cdot BC}=2\sqrt{13}\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HF là đường cao
nên \(AF\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
hay AF/AC=AE/AB
Xét ΔAFE vuông tại A và ΔACB vuông tại A có
AF/AC=AE/AB
Do đó:ΔAFE\(\sim\)ΔACB
Bài 2:
a: Đây là tam giác vuông
b: Đây ko là tam giác vuông