K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=5cm\)

Theo định lí Pytago tam giác MNP vuông tại N

\(NP=\sqrt{MP^2-MN^2}=6cm\)

b, Xét tam giác ABC và tam giác NPM có 

^BAC = ^PNM = 900

\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)

Vậy tam giác ABC ~ tam giác NPM ( c.g.c ) 

a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có 

AB/NP=AC/NM

Do đó: ΔABC\(\sim\)ΔNPM

11 tháng 3 2022

a) Xét \(\Delta ABI\) và \(\Delta DBI:\)

AB = DB (gt).

\(\widehat{ABI}=\widehat{DBI}\) (BI là phân giác \(\widehat{ABC}).\)

BI chung.

\(\Rightarrow\Delta ABI=\Delta DBI\left(c-g-c\right).\\ \Rightarrow\widehat{BAI}=\widehat{BDI}=90^o.\\ \Rightarrow DI\perp BC.\)

b) Xét \(\Delta BCE:\)

ED là đường cao \(\left(ED\perp BC\right).\)

CA là đường cao \(\left(CA\perp AB\right).\)

I là giao điểm của ED và CA.

\(\Rightarrow\) I là trực tâm.

\(\Rightarrow\) BI là đường cao.

Xét \(\Delta BCE:\)

BI là đường cao (cmt).

BI là phân giác (gt).

\(\Rightarrow\) \(\Delta BCE\) cân tại B.

d) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow10^2=8^2+AC^2.\\ \Leftrightarrow AC=6\left(cm\right).\)

11 tháng 3 2022

mik chx hok đường cao và trực tâm nếu câu b bn còn cách giải kahcs thì mik cảm ơn 

3 tháng 12 2021

Ta có \(\widehat{A}=90^0\Rightarrow\Delta ABC\) vuông tại \(A\)

\(a,\widehat{C}=90^0-\widehat{B}=30^0\\ AC=\tan B\cdot AB=\tan60^0\cdot8=8\sqrt{3}\left(cm\right)\\ BC=\dfrac{AB}{\sin C}=\dfrac{8}{\sin30^0}=16\left(cm\right)\\ b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot8\cdot8\sqrt{3}=32\sqrt{3}\left(cm^2\right)\)

11 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

=>\(\widehat{B}\simeq53^0\)

=>\(\widehat{C}\simeq37^0\)

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)

=>\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{10}{7}\)

=>\(DB=\dfrac{30}{7}\left(cm\right);DC=\dfrac{40}{7}\left(cm\right)\)

29 tháng 6 2021

a- Áp dụng định lí pitago vào tam giác ABC vuông tại A .

\(BC=\sqrt{AB^2+AC^2}=17\left(cm\right)\)

b, Ta có khoảng các từ I đến các cạnh là như nhau .

\(S=\dfrac{1}{2}AB.AC=d_{\left(I,AB\right)}.p=60=d_{\left(I,AB\right)}.20\)

=> Khoảng cách từ I đến các cạnh là : \(\dfrac{60}{20}=3\left(cm\right)\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

Suy ra: BH/BA=BA/BC

hay \(BA^2=BH\cdot BC\)

b: \(AH=\sqrt{HB\cdot HC}=6\left(cm\right)\)

\(AB=\sqrt{BH\cdot BC}=2\sqrt{13}\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HF là đường cao

nên \(AF\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

hay AF/AC=AE/AB

Xét ΔAFE vuông tại A và ΔACB vuông tại A có 

AF/AC=AE/AB

Do đó:ΔAFE\(\sim\)ΔACB

4 tháng 3 2022

ôg ơi có hình vẽ k

 

Bài 2: 

a: Đây là tam giác vuông

b: Đây ko là tam giác vuông