K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC vuông tại A và ΔHCA vuông tại H có 

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHCA(g-g)

b) Ta có: ΔABC\(\sim\)ΔHCA(cmt)

nên \(\dfrac{AB}{HC}=\dfrac{AC}{AH}=\dfrac{BC}{CA}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{HC}{AH}=1\)

\(\Leftrightarrow HC=AH=2\left(cm\right)\)

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có 

AB=AC(ΔABC vuông cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(hai cạnh tương ứng)

mà HC=2cm(cmt)

nên HB=2cm

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AB^2=8\)

hay \(AB=2\sqrt{2}\left(cm\right)\)

24 tháng 3 2020

Xét \(\Delta\)ADB có DM là trung tuyến đồng thời là đường cao

=> \(\Delta\)ADB cân tại D

=> \(\widehat{BAD}=\widehat{ABD}\)hay \(\widehat{BAE}=\widehat{ABC}\)

Xét \(\Delta ABC\)và \(\Delta BAE\)có: 

AB chung

\(\widehat{ABC}=\widehat{BAE}\left(cmt\right)\)

BC=AE

=> \(\Delta ABC=\Delta BAE\left(cgc\right)\)

2: góc ABH+góc HBC=góc ABC

góc ACK+góc KCB=góc ACB

mà góc ABC=góc ACB; góc HBC=góc KCB

nên góc ABH=góc ACK

a: BC=35cm

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/21=CD/28

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{35}{49}=\dfrac{5}{7}\)

Do đó:BD=15cm; CD=20cm

b: Xét ΔABC có DE//AB

nên DE/AB=CD/CB

=>DE/21=20/35=4/7

=>DE=12(cm)

Xét ΔABC có ED//AB

nên CE/CA=ED/AB

=>CE/28=12/21=4/7

=>CE=12(cm)

AH
Akai Haruma
Giáo viên
30 tháng 3 2021

Lời giải:

Kẻ $MT\perp AC$

Xét tam giác $ABH$ và $AMH$ có:

$\widehat{BAH}=\widehat{MAH}$

$\widehat{AHB}=\widehat{AHM}$

$AH$ chung

$\Rightarrow \triangle ABH=\triangle AMH$ (c.g.c)

$\Rightarrow BH=HM$

Tương tự ta cũng cm được: $\triangle AMH=\triangle AMT$ (ch-gn)

$\Rightarrow HM=MT$

Do đó: $BH=HM=MT (=\frac{1}{2}BM$)

Mà $BM=MC$ nên $MT=\frac{1}{2}MC$

Xét tam giác $MTC$ vuông tại $T$ có $MT=\frac{1}{2}MC$ nên $\widehat{C}=30^0$

Xét tam giác $AHC$ vuông tại $H$ có $\widehat{C}=30^0$ nên $\widehat{HAC}=60^0$

Mà $\widehat{HAC}=\frac{2}{3}\widehat{BAC}$ nên $\widehat{BAC}=90^0$

Còn lại $\widehat{B}=60^0$

 

AH
Akai Haruma
Giáo viên
30 tháng 3 2021

Hình vẽ:
undefined

a: Xét ΔABC vuông tại A và ΔABD vuông tại A có

AB chung

AC=AD

Do đó: ΔABC=ΔABD

b: Xét ΔMDC có

MA là đường cao

MA là đường trung tuyến

Do đó:ΔMDC cân tại M

Xét ΔMBD và ΔMBC có 

MB chung

BD=BC

MD=MC

Do đó: ΔMBD=ΔMBC

20 tháng 4 2022

20 tháng 4 2022

Xét tam giác ABC có AM là đường cao đồng thời là đường trung tuyến

\(\Rightarrow\Delta ABC\) cân tại A

17 tháng 4 2020

Mục tiêu -500 sp mong giúp đỡ

17 tháng 4 2020

k giải thì thôi ở đó phá