Cho ΔABC, M&N lần lượt là t/đ của BC&AC. Gọi O,H,G lần luotj là tâm đường tròn ngoại tiếp Δ, trực tâm và trọng tâm trong ΔABC. CMR: 1/ MN//=1/2AB
2/ H,G,O thẳng hàng
3/ GH/GO = AH/OM = AG/GM = 2
Nếu đk vẽ hộ mk hình lun nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC vuông tại A và ΔHCA vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔHCA(g-g)
b) Ta có: ΔABC\(\sim\)ΔHCA(cmt)
nên \(\dfrac{AB}{HC}=\dfrac{AC}{AH}=\dfrac{BC}{CA}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{HC}{AH}=1\)
\(\Leftrightarrow HC=AH=2\left(cm\right)\)
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC vuông cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
Suy ra: HB=HC(hai cạnh tương ứng)
mà HC=2cm(cmt)
nên HB=2cm
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=8\)
hay \(AB=2\sqrt{2}\left(cm\right)\)
Xét \(\Delta\)ADB có DM là trung tuyến đồng thời là đường cao
=> \(\Delta\)ADB cân tại D
=> \(\widehat{BAD}=\widehat{ABD}\)hay \(\widehat{BAE}=\widehat{ABC}\)
Xét \(\Delta ABC\)và \(\Delta BAE\)có:
AB chung
\(\widehat{ABC}=\widehat{BAE}\left(cmt\right)\)
BC=AE
=> \(\Delta ABC=\Delta BAE\left(cgc\right)\)
2: góc ABH+góc HBC=góc ABC
góc ACK+góc KCB=góc ACB
mà góc ABC=góc ACB; góc HBC=góc KCB
nên góc ABH=góc ACK
a: BC=35cm
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/21=CD/28
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{35}{49}=\dfrac{5}{7}\)
Do đó:BD=15cm; CD=20cm
b: Xét ΔABC có DE//AB
nên DE/AB=CD/CB
=>DE/21=20/35=4/7
=>DE=12(cm)
Xét ΔABC có ED//AB
nên CE/CA=ED/AB
=>CE/28=12/21=4/7
=>CE=12(cm)
Lời giải:
Kẻ $MT\perp AC$
Xét tam giác $ABH$ và $AMH$ có:
$\widehat{BAH}=\widehat{MAH}$
$\widehat{AHB}=\widehat{AHM}$
$AH$ chung
$\Rightarrow \triangle ABH=\triangle AMH$ (c.g.c)
$\Rightarrow BH=HM$
Tương tự ta cũng cm được: $\triangle AMH=\triangle AMT$ (ch-gn)
$\Rightarrow HM=MT$
Do đó: $BH=HM=MT (=\frac{1}{2}BM$)
Mà $BM=MC$ nên $MT=\frac{1}{2}MC$
Xét tam giác $MTC$ vuông tại $T$ có $MT=\frac{1}{2}MC$ nên $\widehat{C}=30^0$
Xét tam giác $AHC$ vuông tại $H$ có $\widehat{C}=30^0$ nên $\widehat{HAC}=60^0$
Mà $\widehat{HAC}=\frac{2}{3}\widehat{BAC}$ nên $\widehat{BAC}=90^0$
Còn lại $\widehat{B}=60^0$
a: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
Do đó: ΔABC=ΔABD
b: Xét ΔMDC có
MA là đường cao
MA là đường trung tuyến
Do đó:ΔMDC cân tại M
Xét ΔMBD và ΔMBC có
MB chung
BD=BC
MD=MC
Do đó: ΔMBD=ΔMBC
Xét tam giác ABC có AM là đường cao đồng thời là đường trung tuyến
\(\Rightarrow\Delta ABC\) cân tại A