Cho tam giác ABC cân tại A . Cạnh BC : 10cm ; AB = 12cm kẻ đường cao AH . Tính AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lời giải ở đây:
Câu hỏi của cao ngoc khanh linh - Toán lớp 7 - Học toán với OnlineMath
BC và AK cắt BC tại H.Ta có HB=HC (AK là trung trực của BC)
=>HC=BC/2.
AH=√(AC²-CH²);
∆ACH~∆COH (tam giác vuông chung góc nhọn tại O)
=>AH/AC=HC/CO=>CO=AC.HC/AH.
=20.12/√(20²-12²)=20.12/16=15.
Gọi AH, BK là hai đường cao, có AH = 10; BK = 12
thấy hai tgiác CAH và CBK đồng dạng => CA/AH = CB/BK
=> CA/10= 2CH/12 => CA = 2,6.CH (1)
mặt khác áp dụng pitago cho tgiac vuông HAC:
CA² = CH² + AH² (2)
thay (1) vào (2): 2,6².CH² = CH² + 102
=> (2,6² - 1)CH² = 102=> CH = 10 /2,4 = 6,5
=> BC = 2CH = 13 cm
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
\(AC=AB=6\)
Áp dụng định lý phân giác:
\(\dfrac{AD}{AB}=\dfrac{DC}{BC}\Leftrightarrow\dfrac{AD}{6}=\dfrac{6-AD}{10}\)
\(\Leftrightarrow10AD=36-6AD\Rightarrow AD=\dfrac{9}{4}\) (cm)
\(\Rightarrow DC=AC-AD=\dfrac{15}{4}\) (cm)
a. xét tam giác ABH và tam giác ACH
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
BH = CH ( ABC cân, AH là đường cao cũng là trung tuyến )
Vậy tam giác ABH = tam giác ACH ( c.g.c )
b. xét tam giác vuông BNH và tam giác vuông CNH
BN = CM ( AB = AC ; AM = AN )
BH = CH
Vậy tam giác vuông BNH = tam giác vuông CNH ( cạnh huyền. cạnh góc vuông )
c. áp dụng định lý pitao vào tam giác vuông AHB:
\(AB^2=AH^2+BH^2\)
\(BH=\sqrt{10^2-8^2}=\sqrt{64}=8cm\)
=> BC = BH. 2 = 8.2 =16 cm
Chúc bạn học tốt!!!
a, Xét tam giác ABH và tam giác ACH
^AHB = ^AHC = 900
AB = AC (gt)
AH _ chung
Vậy tam giác ABH = tam giác ACH ( ch - cgv )
b, Xét tam ANB và tam giác AMC có :
^A _ chung
AM = AN(gt)
AB = AC (gt)
Vậy tam giác ANB = tam giác AMC ( c.g.c )
=> BN = CM ( 2 cạnh tương ứng )
c, Xét tam giác ABH vuông tại H, theo định lí Pytago
\(BH=\sqrt{AB^2-AH^2}=6cm\)
Xét tam giác ABC cân tại A có AH là đường cao nên đồng thời AH là đường trung tuyến
=> BC = 2BH = 12 cm
ta có:
AH.BC = BK.AC
10.BC = 12.AC
=>BC= 6.AC/5 => BC^2=36.AC^2/25
mặt khác:
AC^2 = AH^2 + BC^2/4 = AH^2 + 36.AC^2/100
=>(1-36/100). AC^2= AH^2 = 100
=> AC^2 = 100^2/8^2
=> AC = 100/8 = 25/2
=> BC = 6.25/2.5=15
tam giac ACH đồng dạng tam giác BKC nên CA/AH = CB/BK
Ai có thể giúp mình với!!!!!!!!!!!!!!!? | Yahoo Hỏi & Đáp
tự thế số vô
AB = 12cm mà AB = AC ( ABC cân tại A )
=> AC = 12 cm.
Xét tam giác vuông ABH và tam giác vuông ACH , ta có:
AB = AC (gt)
B = C ( Tính chất tam giác cân)
=> tam giác ABH = tam giác ACH (hệ quả: cạnh huyền góc nhọn )
=> BH = HC ( Hai cạnh tương ứng của 2 tam giác = nhau )
Mà BH + HC = 10 (cm)
=> BH = HC = 10 : 2 = 5 cm
Theo định lý Py-ta-go, AH2 = AC2-BC2
= 122-52
= 144 - 25
= 119 .