cho đa thức A(x)=ax+b Xác định a,b biết A(1)=5;A(-1)=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(1)=a+b=3
A(-2)=-2a+b=1
Do đó: a+b-(-2a+b)=3-1=2
3a=2
a=2/3
nên b=7/3
Ta có: f(-1)=5
f(2)=-2
Do đó: \(\left\{{}\begin{matrix}-a+b=5\\2a+b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=7\\-a+b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-7}{3}\\b=5+\dfrac{-7}{3}=\dfrac{15}{3}-\dfrac{7}{3}=\dfrac{8}{3}\end{matrix}\right.\)
Vậy: \(a=-\dfrac{7}{3};b=\dfrac{8}{3}\)
a: Bậc là 2
Hệ số cao nhất là -7
Hệ số tự do là 1
b: Thay x=2 vào A=0, ta được:
\(a\cdot2^2-3\cdot2-18=0\)
\(\Leftrightarrow4a=24\)
hay a=6
c: Ta có: C+B=A
nên C=A-B
\(=6x^2-3x-18-1-4x+7x^2\)
\(=13x^2-7x-19\)
Ta có :
F (x) = ax +b
Xét 2 trường hợp :
+> F (x) = 3
a .1 +b = 3
=> a +b = 3 (1)
+> F (-2)=2
a.(-2) + b = 2
=> -2a +b = 2 (2)
Từ ( 1 ) và (2) =>
(a-b) + (-2a +b ) = 3 + 2
=> -1a = 5
=> a = 5
=> b = -2
Ta có: P(1) = a . 1 + b = a + b = 1 (*)
P(2) = a . 2 + b = 2a + b = 5 (**)
(**) - (*) <=> a = 4
=> b = -3
Ta có:
+) P(1) = 1a+b =a+b=1 (1)
+) P(2) = 2a+b=5 (2)
Từ (1) và (2), ta có hệ phương trình: \(\hept{\begin{cases}a+b=1\\2a+b=5\end{cases}}\)
Giải hệ phương trình, ta có: a=4; b=-3
Vậy a=4; b=-3.
A(x)=ax+b
A(1)=a+b=5 => b=5-a(*)
A(-1)=b-a=3 (**)
Thay (*) vào (**) ta có:
(5-a)-a=3
<=> 5-a-a=3
<=> 5-2a=3
<=> -2a=3-5
<=> -2a=-2
<=> a=1
Vậy a=1.