10x=7y;8y=5z và 2x-y+3z=104
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10x-7y=6\)
\(\Rightarrow10x=6+7y\)
\(\Rightarrow x=\frac{6+7y}{10}\)
VÌ x nguyên \(\Rightarrow6+7y\inƯ\left(10\right)\)
Từ đó em có thể tính đc y và x
Ta có: 10x = 15y = 21z => 10x = 15y; 15y = 21z
=> \(\frac{x}{15}=\frac{y}{10};\frac{y}{21}=\frac{z}{15}\) => \(\frac{x}{315}=\frac{y}{210}=\frac{z}{150}\)
Áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{x}{315}=\frac{y}{210}=\frac{z}{150}=\frac{3x-7y+5z}{3\cdot315-7\cdot210+5\cdot150}=\frac{30}{225}=\frac{2}{15}\)
Suy ra: \(\frac{x}{315}=\frac{2}{15}\Rightarrow x=\frac{315\cdot2}{15}=42\)
đề chỉ tìm x nhưng mk giúp bn tìm lun y, z nhé:
\(\frac{y}{210}=\frac{2}{15}\Rightarrow y=\frac{210\cdot2}{15}=28\)
\(\frac{z}{150}=\frac{2}{15}\Rightarrow z=\frac{150\cdot2}{15}=20\)
ta có vì 10x=15y=21z nên => x/1/10=y/1/15=z/1/21
=>3x/3/10 = 7y/7/15=5z/5/21
Ap dụng tính chất dãy các tỉ số bằng nhu ta có
3x-7y+5z / 3/10-7/15+5/21 =30 / 1/14 =420
với 3x / 3/10 =420 => x= 420. 3/10 : =42
với 7y / 7/15 = 420 => x=420. 7/15 : 7=28
với 5z / 5/21=420 => x=420. 5/21 : 5=20
nếu đề là 15y thì giải như sau:
Ta có: 10x = 15y = 21z => 10x = 15y; 15y = 21z
=> \(\frac{x}{15}=\frac{y}{10};\frac{y}{21}=\frac{z}{15}\) => \(\frac{x}{315}=\frac{y}{210}=\frac{z}{150}\)
Áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{x}{315}=\frac{y}{210}=\frac{z}{150}=\frac{3x-7y+5z}{3\cdot315-7\cdot210+5\cdot150}=\frac{30}{225}=\frac{2}{15}\)
Suy ra: \(\frac{x}{315}=\frac{2}{15}\Rightarrow x=\frac{315\cdot2}{15}=42\)
đề chỉ tìm x nhưng mk giúp bn tìm lun y, z nhé:
\(\frac{y}{210}=\frac{2}{15}\Rightarrow y=\frac{210\cdot2}{15}=28\)
\(\frac{z}{150}=\frac{2}{15}\Rightarrow z=\frac{150\cdot2}{15}=20\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{10}}\) =\(\frac{y}{\frac{1}{15}}\)=\(\frac{z}{\frac{1}{21}}\)=\(\frac{3.x}{\frac{3}{10}}\)=\(\frac{7.y}{\frac{7}{15}}\)=\(\frac{5.z}{\frac{5}{21}}\)=\(\frac{3.x-7.y+5.z}{\frac{1}{14}}\)=\(\frac{30}{\frac{1}{14}}\)=420
=>\(\hept{\begin{cases}10.x=420\\15.y=420\\21.z=420\end{cases}}\)=>\(\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)
TK mình nhé
\(x^2-y^2+7x-7y=\left(x^2-y^2\right)+\left(7x-7y\right)=\left(x-y\right)\left(x+y\right)+7\left(x-y\right)=\left(x-y\right)\left(x+y+7\right)\)
\(x^2-10x+25-9y^2=\left(x^2-10x+25\right)-\left(3y\right)^2=\left(x-5\right)^2-\left(3y\right)^2=\left(x-3y-5\right)\left(x+3y-5\right)\)
\(x^2-y^2+7x-7y=\left(x-y\right)\left(x+y\right)+7\left(x-y\right)=\left(x-y\right)\left(x+y+7\right)\)
\(x^2-10x+25-9y^2=\left(x-5\right)^2-\left(3y\right)^2=\left(x-5-3y\right)\left(x-5+3y\right)\)
a: Ta có: \(\left\{{}\begin{matrix}2x-10y=-7\\10x+11y=31\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10x-50y=-35\\10x+10y=31\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-60y=-66\\2x-10y=-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{10}\\2x=-7+10y=-7+11=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{11}{10}\end{matrix}\right.\)
10x=7y
=>x/7=y/10
8y=5z
=>y/5=z/8
=>y/10=z/16
=>x/7=y/10=z/16
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{7}=\dfrac{y}{10}=\dfrac{z}{16}=\dfrac{2x-y+3z}{2\cdot7-10+3\cdot16}=\dfrac{104}{52}=2\)
=>x=14; y=20; z=32