K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10x=7y

=>x/7=y/10

8y=5z

=>y/5=z/8

=>y/10=z/16

=>x/7=y/10=z/16

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{7}=\dfrac{y}{10}=\dfrac{z}{16}=\dfrac{2x-y+3z}{2\cdot7-10+3\cdot16}=\dfrac{104}{52}=2\)

=>x=14; y=20; z=32

20 tháng 8 2017

\(10x-7y=6\)

\(\Rightarrow10x=6+7y\)

\(\Rightarrow x=\frac{6+7y}{10}\)

VÌ x nguyên \(\Rightarrow6+7y\inƯ\left(10\right)\)

Từ đó em có thể tính đc y và x

20 tháng 8 2017

x = 2

y = 2

24 tháng 7 2015

Ta có: 10x = 15y = 21z     => 10x = 15y; 15y = 21z

=> \(\frac{x}{15}=\frac{y}{10};\frac{y}{21}=\frac{z}{15}\)       =>  \(\frac{x}{315}=\frac{y}{210}=\frac{z}{150}\)

Áp dụng tính chất dãy tỉ số bằng nhau, có:

\(\frac{x}{315}=\frac{y}{210}=\frac{z}{150}=\frac{3x-7y+5z}{3\cdot315-7\cdot210+5\cdot150}=\frac{30}{225}=\frac{2}{15}\)

Suy ra: \(\frac{x}{315}=\frac{2}{15}\Rightarrow x=\frac{315\cdot2}{15}=42\)

đề chỉ tìm x  nhưng mk giúp bn tìm lun y, z nhé:

 \(\frac{y}{210}=\frac{2}{15}\Rightarrow y=\frac{210\cdot2}{15}=28\)

\(\frac{z}{150}=\frac{2}{15}\Rightarrow z=\frac{150\cdot2}{15}=20\)

24 tháng 7 2015

ta có vì 10x=15y=21z nên => x/1/10=y/1/15=z/1/21

=>3x/3/10 = 7y/7/15=5z/5/21

Ap dụng tính chất dãy các tỉ số bằng nhu ta có

3x-7y+5z  /   3/10-7/15+5/21 =30 / 1/14 =420

với 3x / 3/10 =420 => x= 420. 3/10 : =42

với 7y / 7/15 = 420 => x=420. 7/15 : 7=28

với 5z / 5/21=420 => x=420. 5/21 : 5=20

 

24 tháng 7 2015

nếu đề là 15y thì giải như sau:

Ta có: 10x = 15y = 21z     => 10x = 15y; 15y = 21z

=> \(\frac{x}{15}=\frac{y}{10};\frac{y}{21}=\frac{z}{15}\)       =>  \(\frac{x}{315}=\frac{y}{210}=\frac{z}{150}\)

Áp dụng tính chất dãy tỉ số bằng nhau, có:

\(\frac{x}{315}=\frac{y}{210}=\frac{z}{150}=\frac{3x-7y+5z}{3\cdot315-7\cdot210+5\cdot150}=\frac{30}{225}=\frac{2}{15}\)

Suy ra: \(\frac{x}{315}=\frac{2}{15}\Rightarrow x=\frac{315\cdot2}{15}=42\)

đề chỉ tìm x  nhưng mk giúp bn tìm lun y, z nhé:

 \(\frac{y}{210}=\frac{2}{15}\Rightarrow y=\frac{210\cdot2}{15}=28\)

\(\frac{z}{150}=\frac{2}{15}\Rightarrow z=\frac{150\cdot2}{15}=20\)

 

3 tháng 2 2017

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{\frac{1}{10}}\) =\(\frac{y}{\frac{1}{15}}\)=\(\frac{z}{\frac{1}{21}}\)=\(\frac{3.x}{\frac{3}{10}}\)=\(\frac{7.y}{\frac{7}{15}}\)=\(\frac{5.z}{\frac{5}{21}}\)=\(\frac{3.x-7.y+5.z}{\frac{1}{14}}\)=\(\frac{30}{\frac{1}{14}}\)=420

=>\(\hept{\begin{cases}10.x=420\\15.y=420\\21.z=420\end{cases}}\)=>\(\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)

TK mình nhé 

30 tháng 8 2021

\(x^2-y^2+7x-7y=\left(x^2-y^2\right)+\left(7x-7y\right)=\left(x-y\right)\left(x+y\right)+7\left(x-y\right)=\left(x-y\right)\left(x+y+7\right)\)

\(x^2-10x+25-9y^2=\left(x^2-10x+25\right)-\left(3y\right)^2=\left(x-5\right)^2-\left(3y\right)^2=\left(x-3y-5\right)\left(x+3y-5\right)\)

30 tháng 8 2021

\(x^2-y^2+7x-7y=\left(x-y\right)\left(x+y\right)+7\left(x-y\right)=\left(x-y\right)\left(x+y+7\right)\)

\(x^2-10x+25-9y^2=\left(x-5\right)^2-\left(3y\right)^2=\left(x-5-3y\right)\left(x-5+3y\right)\)

a: Ta có: \(\left\{{}\begin{matrix}2x-10y=-7\\10x+11y=31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10x-50y=-35\\10x+10y=31\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-60y=-66\\2x-10y=-7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{10}\\2x=-7+10y=-7+11=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{11}{10}\end{matrix}\right.\)