K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 8 2021

\(M=2003\left(\dfrac{1}{a}+4a\right)+2016\left(\dfrac{1}{b}+b\right)-5012a-7518b\)

\(M=2003\left(\dfrac{1}{a}+4a\right)+2016\left(\dfrac{1}{b}+b\right)-2506\left(2a+3b\right)\)

\(M\ge2003.2\sqrt{\dfrac{4a}{a}}+2016.2\sqrt{\dfrac{b}{b}}-2506.4=2020\)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{2};1\right)\)

NV
27 tháng 3 2022

\(6a+3b+2c=abc\Leftrightarrow\dfrac{2}{ab}+\dfrac{3}{ac}+\dfrac{6}{bc}=1\)

Đặt \(\left(\dfrac{1}{a};\dfrac{2}{b};\dfrac{3}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(Q=\dfrac{1}{\sqrt{\dfrac{1}{x^2}+1}}+\dfrac{2}{\sqrt{\dfrac{4}{y^2}+4}}+\dfrac{3}{\sqrt{\dfrac{9}{z^2}+9}}=\dfrac{x}{\sqrt{x^2+1}}+\dfrac{y}{\sqrt{y^2+1}}+\dfrac{z}{\sqrt{z^2+1}}\)

\(Q=\dfrac{x}{\sqrt{x^2+xy+yz+zx}}+\dfrac{y}{\sqrt{y^2+xy+yz+zx}}+\dfrac{z}{\sqrt{z^2+xy+yz+zx}}\)

\(Q=\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}}+\dfrac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\)

\(Q\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)=\dfrac{3}{2}\)

\(Q_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(\left(a;b;c\right)=\left(\sqrt{3};2\sqrt{3};3\sqrt{3}\right)\)

7 tháng 7 2020

Đặt \(K=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)

\(\Rightarrow2K=2a\sqrt{b^3+1}+2b\sqrt{c^3+1}+2c\sqrt{a^3+1}=\)\(2a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}+2b\sqrt{\left(c+1\right)\left(c^2-c+1\right)}\)\(+2c\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\)\(\le a\left[\left(b+1\right)+\left(b^2-b+1\right)\right]+b\left[\left(c+1\right)+\left(c^2-c+1\right)\right]\)\(+c\left[\left(a+1\right)+\left(a^2-a+1\right)\right]\)(Theo BĐT AM - GM)

\(=a\left(b^2+2\right)+b\left(c^2+2\right)+c\left(a^2+2\right)\)\(=ab^2+bc^2+ca^2+6\)

Đặt \(M=ab^2+bc^2+ca^2\)

Không mất tính tổng quát, giả sử \(a\ge c\ge b\)thì ta có \(b\left(a-c\right)\left(c-b\right)\ge0\Leftrightarrow abc+b^2c\ge ab^2+bc^2\)

\(\Leftrightarrow ab^2+bc^2+ca^2\le abc+b^2c+ca^2\)

hay \(M\le abc+b^2c+ca^2\le2abc+b^2c+ca^2=c\left(a+b\right)^2\)\(=4c.\frac{a+b}{2}.\frac{a+b}{2}\le\frac{4}{27}\left(c+\frac{a+b}{2}+\frac{a+b}{2}\right)^3\)\(=\frac{4\left(a+b+c\right)^3}{27}=4\)

\(\Rightarrow2K\le10\Rightarrow K\le10\)

Vậy \(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)

Đẳng thức xảy ra khi \(\left(a,b,c\right)=\left(2,0,1\right)\)

7 tháng 7 2020

Kiệt cop sai đáp án rồi kìa :))
Đoạn cuối không giả sử \(a\ge c\ge b\) được đâu nhá

Mà phải giả sử b là số nằm giữa a và c

Khi đó:

\(\left(b-a\right)\left(b-c\right)\le0\Leftrightarrow b^2+ac\le ab+bc\)

\(\Leftrightarrow ab^2+a^2c\le a^2b+abc\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2=b\left(a^2+ac+c^2\right)\)

\(\le b\left(a^2+2ac+c^2\right)=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta chứng minh \(b\left(3-b\right)^2\le4\Leftrightarrow\left(b-1\right)^2\left(b-4\right)\le0\) *đúng *

Vậy ............................

2 tháng 8 2018

\(P=2a+3b+\frac{1}{a}+\frac{4}{b}=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)

   \(\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)

Dấu "=" xảy ra <=>  \(a=1;\)\(b=2\)

Vậy MIN P = 11  Khi a = 1;   b = 2

2 tháng 8 2018

Bài này là BĐT cosi

\(P=2a+3b+\frac{1}{a}+\frac{4}{b}\)

\(P=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)

\(P\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)

Dấu "=" xảy ra khi a = 1/a <=> a = 1 ; b = 4/b <=> b = 2

NV
3 tháng 1 2022

\(\left(a+1\right)\left(b+1\right)=4ab\Leftrightarrow\left(\dfrac{1}{a}+1\right)\left(\dfrac{1}{b}+1\right)=4\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-x-y\)

\(P=\dfrac{x}{\sqrt{x^2+3}}+\dfrac{y}{\sqrt{y^2+3}}\le\dfrac{x}{\sqrt{\dfrac{\left(x+3\right)^2}{4}}}+\dfrac{y}{\sqrt{\dfrac{\left(y+3\right)^2}{4}}}=\dfrac{2x}{x+3}+\dfrac{2y}{y+3}\)

\(P\le\dfrac{4xy+6x+6y}{\left(x+3\right)\left(y+3\right)}=\dfrac{4xy+6x+6y}{xy+3x+3y+9}=\dfrac{4\left(3-x-y\right)+6x+6y}{3-x-y+3x+3y+9}=\dfrac{2x+2y+12}{2x+2y+12}=1\)

\(P_{max}=1\) khi \(x=y=1\) hay \(a=b=1\)

NV
21 tháng 1 2021

Đặt vế trái của BĐT là P:

\(P=\sqrt{\left(a+2\right)\left(b+2\right)}+\sqrt{2b.\left(a+1\right)}\)

\(P\le\dfrac{1}{2}\left(a+2+b+2\right)+\dfrac{1}{2}\left(2b+a+1\right)\)

\(P\le\dfrac{1}{2}\left(2a+3b+5\right)=\dfrac{1}{2}.2024=1012\)

Dấu "=" không xảy ra

27 tháng 10 2021

Sửa đề \(\sqrt{a^2+bc}+\sqrt{b^2+ca}+\sqrt{c^2+ab}\le6\)

\(\sqrt{a^2+3b}=\sqrt{a^2+\left(a+b+c\right)b}=\sqrt{a^2+ab+b^2+bc}\\ =\sqrt{\left(a+b\right)\left(a+c\right)}\le\dfrac{a+b+a+c}{2}=\dfrac{2a+b+c}{2}\)

Cmtt \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{b^2+3c}\le\dfrac{a+2b+c}{2}\\\sqrt{c^2+3a}\le\dfrac{a+b+2c}{2}\end{matrix}\right.\)

Cộng VTV:

\(\Leftrightarrow VT\le\dfrac{2a+b+c+a+2b+c+a+b+2c}{2}\\ \Leftrightarrow VT\le\dfrac{4\left(a+b+c\right)}{2}=2\left(a+b+c\right)=6\)

Dấu \("="\Leftrightarrow a=b=c=1\)

27 tháng 10 2021

em chưa hiểu cách biến đổi của cái này ạ\(\sqrt{a^2+ab+b^2+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\)