3x=2y;7y=5z va x+z-y=32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(9x^2+4y^2=20xy\Rightarrow9x^2-20xy+4y^2=0\)
\(\Leftrightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\)\(\Leftrightarrow\left(x-2y\right)\left(9x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=2y\\x=\frac{2}{9}y\end{cases}}\)
Với \(x=2y\Rightarrow A=\frac{3.2y+2y}{3.2y-2y}=\frac{8y}{4y}=2\)
Với \(x=\frac{2}{9}y\Rightarrow A=\frac{3.\frac{2}{9}y+2y}{3.\frac{2}{9}y-2y}=\frac{\frac{8}{3}y}{-\frac{4}{3}y}=-2\)
Từ \(9x^2+4y^2=20xy\Rightarrow9x^2-20xy+4y^2=0\)
\(\Leftrightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\Leftrightarrow\left(x-2y\right)\left(9x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=2y\\x=\frac{2}{9}y\end{cases}}\)
Với \(x=2y\Rightarrow A=\frac{3\cdot2y+2y}{3\cdot2y-2y}=\frac{8y}{4y}=2\)
Với \(x=\frac{2}{9}y\Rightarrow A=\frac{3\cdot\frac{2}{9}y+2y}{3\cdot\frac{2}{9}y-2y}=\frac{\frac{8}{3}y}{-\frac{4}{3}y}=-2\)
a: =>3M+2x^4y^4=x^4y^4
=>3M=-x^4y^4
=>M=-1/3*x^4y^4
b: x^2-2M=3x^2
=>2M=-2x^2
=>M=-x^2
c: =>M=-x^2y^3-3x^2y^3=-4x^2y^3
d: =>M=7x^2y^2-3x^2y^2=4x^2y^2
Ta có: \(A^2=\dfrac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}\)
\(=\dfrac{9x^2+4x^2-12xy}{9x^2+4x^2+12xy}\)
\(=\dfrac{20xy-12xy}{20x^2+12xy}\)
\(=\dfrac{8xy}{32xy}=\dfrac{1}{4}\)
\(\Leftrightarrow A\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)(1)
Vì 2y<3x<0 nên 3x-2y>0 và 3x+2y<0
hay \(A=\dfrac{3x-2y}{3x+2y}< 0\)(2)
Từ (1) và (2) suy ra \(A=-\dfrac{1}{2}\)
Vậy: \(A=-\dfrac{1}{2}\)
a: =6xy+xy=7xy
b: =-9xy^2
c: =-x^2y^3z^4
d: =-4x^2y
e: =-30x^2y
f: =6x^2y
P(x)+Q(x)
=3x^2y-2x+5xy^2-7y^2+3xy^2-7y^2-9x^2y-x-5
=8xy^2-14y^2-6x^2y-3x-5
=>Chọn A
Ta có :3x=2y;7y=5z và x+z-y=32
=>3x=2y;7y=5z=>x/2=y/3;y/5=z/7=>x/2=5y/15;3y/15=z/7=>x/10=y/15=z/21
Áp dụng tính chất dãy tỉ số bằng nhau :
x/10=y/15=z/21=x+z-y/10+15-21=32/4=8
Suy ra :x/10=8=>x=8.10=80
y/15=8=>y=15.8=120
z/21=8=>z=8.21=168
Ta có : \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+z-y}{10+21-15}=\frac{32}{16}=2\)
\(\Rightarrow x=10\cdot2=20\)
\(y=15\cdot2=30\)
\(z=2\cdot21=42\)