a) Tìm số tự nhiên a nhỏ nhất biết:
a chia cho 6, cho 15, cho 16 có các số dư theo thứ tự là 3;6;7.
b) Cho \(A=4+4^2+4^3+...+4^{24}\)
chứng tỏ A chia hết cho 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 6, 7, 9 được số dư lần lượt là 2, 3, 5 nên (a+4) chia hết cho 6,7,9.
Suy ra (a+4) ∈ BC(6,7,9)
Mà a là số tự nhiên nhỏ nhất
Suy ra (a+4) = BC(6,7,9) = 3 2 . 2 . 7 = 126 => a+4 = 126 => a = 122
Vậy số phải tìm là 126
b, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 17, 25 được các số dư theo thứ tự là 8 và 16.
nên (a+7) chia hết cho 8; 16.
Suy ra (a+7) ∈ BC(8;16)
Suy ra BCNN(8;16) = 16 => a+7 ∈ B(16) = 16k (k ∈ N).
Vậy số phải tìm có dạng 16k – 7
b)
Ta có : \(A=4+4^2+4^3+...+4^{24}\)
\(A=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{22}+4^{23}+4^{24}\right)\)
\(A=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{22} \left(1+4+4^2\right)\)
\(A=4\cdot21+4^4\cdot21+4^8\cdot21+...+4^{22}\cdot21\)
\(\Rightarrow A⋮21\)vÌ A có 24 số hạng nên chia đều được cho 24 : 3 = 8 (Cặp) như thế
a) \(a\)chia \(6\)dư \(3\)\(\Rightarrow\)\(\left(a+9\right)⋮6\)\(\left(1\right)\)
\(a\)chia \(15\)dư \(6\)\(\Rightarrow\)\(\left(a+9\right)⋮15\)\(\left(2\right)\)
\(a\)chia \(16\)dư \(7\)\(\Rightarrow\)\(\left(a+9\right)⋮16\)\(\left(3\right)\)
Từ \(\left(1\right),\left(2\right)\)và \(\left(3\right)\)suy ra \(\left(a+9\right)\in BCNN\left(6;15;16\right)\)
Mà \(BCNN\left(6;15;16\right)=2^4.3.5=240\)
Vậy \(a=240\)