. Cho a,b,c là ba số tỉ lệ nghịch với 3; 4; 6 và a+ b - c=20 . Tìm ba số a b, và c ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo đề ra ta có:
$xz=a; zy=b; yx=a$
t là số nào trong này hả bạn?
a) Ta có:
a và b tỉ lệ nghịch với 3 và 2 (gt).
\(\Rightarrow3a=2b.\)
\(\Rightarrow\frac{3a}{6}=\frac{2b}{6}.\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}\) (1).
+ b và c tỉ lệ thuận với 4 và 3 (gt).
\(\Rightarrow\frac{b}{4}=\frac{c}{3}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{3}.\)
Lại Có:
\(\left\{{}\begin{matrix}\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{8}=\frac{b}{12}\\\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{b}{12}=\frac{c}{9}\end{matrix}\right.\)
\(\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{9}\) và \(a+b+c=100.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{8}=\frac{b}{12}=\frac{c}{9}=\frac{a+b+c}{8+12+9}=\frac{100}{29}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{8}=\frac{100}{29}\Rightarrow a=\frac{100}{29}.8=\frac{800}{29}\\\frac{b}{12}=\frac{100}{29}\Rightarrow b=\frac{100}{29}.12=\frac{1200}{29}\\\frac{c}{9}=\frac{100}{29}\Rightarrow c=\frac{100}{29}.9=\frac{900}{29}\end{matrix}\right.\)
Vậy \(\left(a;b;c\right)=\left(\frac{800}{29};\frac{1200}{29};\frac{900}{29}\right).\)
Chúc bạn học tốt!
Câu 1:
- Gọi số tiền lãi mà cả mỗi đơn vị sản xuất nhận được lần lượt là x, y, z tỉ lệ với các số 7; 8; 9.
Ta có: x/7= y/8= z/9 và x+ y+ z= 720 000 000.
=> x/7+ y/8+ z/9= 720 000 000/24= 30 000 000
<=> x/7= 30 000 000 nên x= 7×30 000 000= 210 000 000
y/8= 30 000 000 nên y= 8×30 000 000= 240 000 000
z/9= 30 000 000 nên z= 9×30 000 000= 270 000 000
Vậy, đơn vị sản xuất đầu tiên nhận được 210 000 000 triệu đồng tiền lãi; đơn vị sản xuất thứ hai nhận được 240 000 000 triệu đồng tiền lãi; đơn vị sản xuất thứ ba nhận được 270 000 000 triệu đồng tiền lãi.
theo đề bài ta có :
a và b tỉ lệ nghịch với 3 và 2
=> 3a = 2b \(\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}\Rightarrow\dfrac{a}{4}=\dfrac{b}{6}\) ( 1 )
b và c tỉ lệ nghịch với 3 và 2
=> 3b = 2c => \(\dfrac{b}{2}=\dfrac{c}{3}\Rightarrow\dfrac{b}{6}=\dfrac{c}{9}\) ( 2 )
Từ ( 1 ), ( 2 ) => \(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{9}\Rightarrow\dfrac{2a}{8}=\dfrac{3b}{18}=\dfrac{4c}{36}\) và 2a + 3b - 4c = 100
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{2a}{8}=\dfrac{3b}{18}=\dfrac{4c}{36}=\dfrac{2a+3b-4c}{8+18-36}=\dfrac{100}{-10}=-10\)
\(\dfrac{a}{4}=-10\Rightarrow a=-40\)
\(\dfrac{b}{6}=-10\Rightarrow b=-60\)
\(\dfrac{c}{9}=-10=>c=-90\)
Vậy 3 số a,b,c lần lượt là -40 ; -60 ; -90
\(1,4a=5b\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{b-a}{4-5}=\dfrac{27}{-1}=-27\\ \Leftrightarrow\left\{{}\begin{matrix}a=-135\\b=-108\end{matrix}\right.\\ 2,\dfrac{1}{3}x=\dfrac{1}{2}y=\dfrac{1}{5}z\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{5}=\dfrac{x+2y-z}{3+4-5}=\dfrac{8}{2}=4\\ \Leftrightarrow\left\{{}\begin{matrix}x=12\\y=8\\z=20\end{matrix}\right.\\ 3,\dfrac{1}{3}a=\dfrac{1}{2}b;\dfrac{1}{5}a=\dfrac{1}{7}c\\ \Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{184}{46}=4\\ \Leftrightarrow\left\{{}\begin{matrix}a=60\\b=40\\c=84\end{matrix}\right.\)
\(3a=4b=6c\Rightarrow\dfrac{3a}{12}=\dfrac{4b}{12}=\dfrac{6c}{12}\\ \Rightarrow\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{2}=\dfrac{a+b-c}{4+3-2}=\dfrac{20}{5}=4\\ \Rightarrow\left\{{}\begin{matrix}a=16\\b=12\\c=8\end{matrix}\right.\)