Tìm \(\overline{xyz}\) biết 3x=2y;4y=3z và \(\overline{xyz}⋮9\).
Cần gấp, các bạn học sinh giỏi vào đây giải dùm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{6}=k\)
=> \(\hept{\begin{cases}x=5k\\y=-4k\\z=6k\end{cases}}\) (1)
Khi đó, ta cóL
\(\left(5k\right).\left(-4k\right).\left(6k\right)=15\)
=> \(-120k^3=15\)
=> \(k^3=-\frac{1}{8}\)
=> \(k=-\frac{1}{2}\)
Thay k = -1/2 vào (1), ta được:
x = 5 . (-1/2) = -2,5
y = -4.(-1/2) = 2
z = 6 . (-1/2) = -3
Vậy ...
b)Đặt \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{6}=k\)
\(\Rightarrow x=5k;y=-4k;z=6k\)
\(\Rightarrow xyz=5k.\left(-4k\right).6k=-120k^3\)
\(\Rightarrow15=-120k^3\)
\(\Rightarrow k^3=-\frac{1}{8}\Rightarrow k=-\frac{1}{2}\)
Từ \(\frac{x}{5}=-\frac{1}{2}\Rightarrow x=5\)
\(\frac{y}{-4}=-\frac{1}{2}\Rightarrow y=2\)
\(\frac{z}{6}=-\frac{1}{2}\Rightarrow z=-3\)
Vậy x = 5 ; y = -2 ; z = -3
Nhận xét : Ta thấy ngay x,y,z khác nhau và x từ 0 đến 9 ; y từ 0 đến 9 , z từ 0 đến 9, cho nên : \(0< x+y+z< 27(1)\)
\(\frac{1}{x+y+z}=\frac{\overline{xyz}}{1000}\Leftrightarrow\frac{1}{x+y+z}=0,\overline{xyz}\Rightarrow1=(x+y+z)\cdot0,\overline{xyz}\)
Nhân cả hai vế với 1000,ta được : \(1000=(x+y+z)\cdot\overline{xyz}\)
Vì \((1)\)nên \(x+y+z\)chỉ có thể nhận các giá trị 1,2,4,5,8,10,20,25
Thử : \(\frac{1000}{1}=1000;\frac{1000}{2}=500;\frac{1000}{4}=250;\frac{1000}{5}=200\)
\(\frac{1000}{8}=125;\frac{1000}{10}=100;\frac{1000}{20}=50;\frac{1000}{25}=40\)
Chỉ có trường hợp \(\frac{1000}{8}=125\)đúng vì 8 = 1 + 2 + 5
Vậy các chữ số cần tìm là : x = 1 , y = 2 , z = 5
Thử lại : \(\frac{1}{8}=0,125\)
`A = x - 2y + xy - 3x + y^2`
Bậc: `2`.
`B = (1-1/2)xyz - x^2y + (1+1/2)xz`
`= 1/2xyz - x^2y + 3/2xz`
Bậc: `3`
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(5x=2z\Rightarrow\frac{x}{2}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow\left(2k\right)^3+\left(3k\right)^3-2k\cdot3k\cdot5k=40\)
\(\Rightarrow k^3\cdot8+k^3\cdot27-k^3\cdot30=40\)
\(\Rightarrow k^3\left(8+27-30\right)=40\)
\(\Rightarrow k^3=8\)
\(\Rightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot2=4\\y=2\cdot3=6\\z=2\cdot5=10\end{cases}}\)
Có xy+yz+zx=xyzxy+yz+zx=xyz⇔⇔xy+yz+zxxyz=1xy+yz+zxxyz=1⇔⇔1x+1y+1z=11x+1y+1z=1
x2yy+2x+y2zz+2y+z2xx+2z=11x2+2xy+11y2+2yz+11z2+2zx≥91x2+1y2+1z2+2(1xy+1yz+1zx)x2yy+2x+y2zz+2y+z2xx+2z=11x2+2xy+11y2+2yz+11z2+2zx≥91x2+1y2+1z2+2(1xy+1yz+1zx)
=9(1x+1y+1z)2=912=9=9(1x+1y+1z)2=912=9
Dấu "=" ko xảy ra ⇒⇒x2yy+2x+y2zz+2y+z2xx+2z>9
Theo đề thì 6x=4y=3z
Mà x+y+z phải chia hết cho 9 nên ta có
\(\frac{3}{4}z+\frac{1}{2}z+z⋮9\Leftrightarrow\frac{9}{4}z⋮9\)
mà \(z\le9\Rightarrow z\in\left\{4;8\right\}\)
Thay z=4 ta được y=3 ,x=2
Thay z=8 ta được y=6 ,x=4
Vậy .........