K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2020

Gọi độ dài các cạnh BC  a  

, ,  

AC  b AB  c . Độ dài các đường cao kẻ  

từ đỉnh lần lượt là  

Aagiác ABC đến các cạnh tỉ lệ với các số ;  

3

; nên ta có

,

B

,

C

x

, ,  

z

. Khoảng cách từ trọng tâm tam  ,x/2=y/3=z/3=k Mặt khác ax  by  cz  2SABC nên  , tự gjaj tjep nha

8 tháng 6 2019

3 tháng 3 2018

Hình tự vẽ sắp phải đi học 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{16^2+30^2}=34\left(cm\right)\)

Ta có \(\Delta ABC\perp A\)( gt )

\(MC=\sqrt{AC^2+AM^2}=\sqrt{30^2+8^2}=2\sqrt{241}\left(cm\right)\)

\(AM=\frac{1}{2}.BC=\frac{1}{2}.34=17\left(cm\right)\)

\(BD=\sqrt{AB^2+AD^2}=\sqrt{16^2+15^2}=\sqrt{481}\)

Khoảng cách từ G đến các đỉnh bằng 2/3 khoảng cách đường trung tuyến 

25 tháng 1 2021

Ta tính được \(AG=a\dfrac{\sqrt{3}}{3}\)

Từ gt ta có:

\(\widehat{\left(SA,\left(ABC\right)\right)}=\widehat{\left(SA,AG\right)}=\widehat{SAG}=60^0\)(Vì S.ABC là chóp tam giác đều nên \(SG\perp\left(ABC\right)\))

Khi đó SG=AG.tan60=a

Gọi M là trung điểm BC \(\Rightarrow GM=a\dfrac{\sqrt{3}}{6}\)

Đặt d(G,(SBC))=x

Áp dụng mô hình "điểm tốt - vẽ hai bước" cho hình chóp S.GBC với G là "điểm tốt" ta có:

\(\dfrac{1}{x^2}=\dfrac{1}{SG^2}+\dfrac{1}{GM^2}=\dfrac{1}{a^2}+\dfrac{1}{\left(a\dfrac{\sqrt{3}}{6}\right)^2}\)

\(\Rightarrow x=\dfrac{a}{\sqrt{13}}\)

25 tháng 1 2021

Mô hình "điểm tốt - vẽ hai bước": Cho hình chóp S.ABC với \(SA\perp\left(ABC\right)\). Kẻ \(AH\perp BC,AK\perp SH\) thì d(A,(SBC))=AK.

CM: Ta có: \(SA\perp\left(ABC\right)\Rightarrow SA\perp AH\)

Mà \(AH\perp BC\Rightarrow BC\perp\left(SAH\right)\)

\(\Rightarrow\left(SBC\right)\perp\left(SAH\right)\) theo giao tuyến SH

Mà \(AK\perp SH,AK\subset\left(SAH\right)\) \(\Rightarrow AK\perp\left(SBC\right)\), dễ dàng suy ra đpcm

 

 

12 tháng 3 2019

Chọn C