dãy số nào là 1 cấp số cộng ( giải chi tiết )
a) 1; -3; -7; -11; -15
b) 1; -3; -6; -9; -12
c) 2;2;2;2;3;3;3;3;3
d) \(u_n=2n-5\)
e) \(u_n=2^n\)
f) \(u_n=4-3n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(u_1=1;u_2=4;u_3=9\)
Vì 1+9<>2*4
nên đây không là cấp số cộng
\(u1=2;u2=4;u3=8\)
Vì \(2\cdot u2< >u1+u3\)
nên đây không là cấp số cộng
Các dãy là cấp số công là c;e;f
c: \(u2-u1=u3-u2=u4-u3=u5-u4=0\)
=>Đây là cấp số cộng có công sai là 0
e: \(u_{n+1}-u_n=1-4\left(n+1\right)-4+4n=-4n-4+4n=-4\)
=>Đây là cấp số cộng có công sai là d=-4
f: \(u_{n+1}-u_n\)
\(=-5\left(n+1\right)+2+5n-2\)
=-5n-5+5n
=-5
=>Đây là cấp số cộng có công sai là d=-5
a: \(\dfrac{u_{n+1}}{u_n}=\dfrac{3^{n+1}}{3^n}=3\)
=>\(u_{n+1}=3\cdot u_n\)
=>Đây là cấp số nhân có công bội là q=3
b: \(\dfrac{u_{n+1}}{u_n}=\dfrac{1}{2^{n+2}}:\dfrac{1}{2^{n+1}}=\dfrac{2^{n+1}}{2^{n+2}}=\dfrac{2^n\cdot2}{2^n\cdot4}=\dfrac{1}{2}\)
=>\(u_{n+1}=\dfrac{1}{2}\cdot u_n\)
=>Đây là cấp số nhân có công bội là q=1/2
\(u_n=\dfrac{1}{3^n}=\left(\dfrac{1}{3}\right)^n\\ \Rightarrow Câu.b.cấp.số.nhân\)
Câu a cũng là cấp số nhân với công bội q=2
1, Dãy a nha với d= 2
2,
\(u_1=3.1+1=4\\ u_2=3.2+1=7\\ d=u_2-u_1=7-4=3\)
Ta thấy các số cách nhau bằng các số lẻ liên tiếp:
2-1=1
5-2=3
10-5=5
17-10=7
Vậy số tiếp theo là: 17+9=26; 26+11=37; 37+13=50; 50+15=65; 65+17=82
a: Đây là cấp số cộng có công sai là d=-4 vì -3-1=-7-(-3)=(-11)-(-7)=(-15)-(-11)=-4
b,c,e không là cấp số cộng
d: \(u_{n+1}-u_n=2\left(n+1\right)-5-2n+5=2n+2-2n=2\)
=>Đây là cấp số cộng có công sai là d=2
f: \(u_{n+1}-u_n=-3\left(n+1\right)+4+3n-4=-3n-3+3n=-3\)
=>Đây là cấp số cộng có công sai là d=-3