Cho hai đường tròn (O; 2cm), (O’; 3cm), OO’ = 6cm. Vẽ đường tròn (O’; 1cm) rồi kẻ tiếp tuyến OA với đường tròn đó (A là tiếp điểm). Tia O’A cắt đường tròn (O’; 3cm) ở B. Kẻ bán kính OC của đường tròn (O) song song với O’B, B và C thuộc cùng một nửa mặt phẳng có bờ OO’. Chứng minh rằng BC là tiếp tuyến chung của hai đường tròn (O; 2cm), (O’; 3cm).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: góc ABC = 90 độ ( góc nt chắn nửa đt )
góc ABD = 90 độ ( góc nt chắn nửa đt )
=> CBD = góc ABC + góc ABD = 180 độ
=> ba điểm C,B,D thẳng hàng
hình bẹn tự vẽ hén:
giải:
Có \(\widehat{ABC}=90^o\) ( vì góc ABC chắn nửa đường tròn đường kính AC)
\(\widehat{ABD}=90^o\) ( vì góc ABD chắn nửa đường tròn đường kính AD)
\(\Rightarrow\widehat{ABC}+\widehat{ABD}=180^o\)
Vậy ba điểm C; B ; D thẳng hàng.
Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r). Hai tiếp tuyến chung AB và A'B' của hai đường tròn (o),(O') cắt nhau tại P(A và A' thuộc đường tròn (O'), B và B' thuộc đường tròn (O)). Biết PA = AB = 4 cm. Tính diện tích hình tròn (O').
Hướng dẫn làm bài:
Vì AB là tiếp tuyến chung của (O) và (O’) nên OB ⊥ AB và O’A ⊥ AB
Xét hai tam giác vuông OPB và O’AP, ta có:
ˆA=ˆB=900A^=B^=900
ˆP1P1^ chung
Vậy ΔOBP ~ ∆ O’AP
⇒rR=PO′PO=PAPB=48=12⇒R=2r⇒rR=PO′PO=PAPB=48=12⇒R=2r
Ta có PO’ = OO’ = R + r = 3r (do AO’ là đường trung bình của ∆OBP)
Áp dụng định lí Py-ta-go trong tam giác vuông O’AP
O’P = O’A2 + AP2 hay (3r)2 = r2 + 42 ⇔ 9r2 = r2 + 16 ⇔ 8 r2 =16 ⇔ r2 = 2
Diện tích đường tròn (O’;r) là: S = π. r2 = π.2 = 2π (cm2)
Vì AB là tiếp tuyến chung của (O) và (O’) nên OB ⊥ AB và O’A ⊥ AB
Xét hai tam giác vuông OPB và O’AP, ta có:
ˆA=ˆB=900A^=B^=900
ˆP1P1^ chung
Vậy ΔOBP ~ ∆ O’AP
⇒rR=PO′PO=PAPB=48=12⇒R=2r⇒rR=PO′PO=PAPB=48=12⇒R=2r
Ta có PO’ = OO’ = R + r = 3r (do AO’ là đường trung bình của ∆OBP)
Áp dụng định lí Py-ta-go trong tam giác vuông O’AP
O’P = O’A2 + AP2 hay (3r)2 = r2 + 42 ⇔ 9r2 = r2 + 16 ⇔ 8 r2 =16 ⇔ r2 = 2
Diện tích đường tròn (O’;r) là: S = π. r2 = π.2 = 2π (cm2)
c: góc BDC=1/2*góc BOC=60 độ
BD//AC
=>góc DCx=góc BDC=60 độ(so le trong)
=>góc ODC=góc OCD=90-60=30 độ
góc BDO=góc CDO=30 độ
=>góc BOD=góc COD=120 độ
=>ΔBOD=ΔCOD
=>BD=CD
=>D nằm trên trung trực của BC
=>A,O,D thẳng hàng
a) Áp dụng định lý Py-ta-go, ta tính được AB = 4(cm)
(câu a tự trình bày nhé)
b) Gọi H= OA _|_ BC . khi đó H là trung điểm BC
=> HB = HC
Xét 2 tam giác vuông AHB và AHC:
AH chung; HB = HC (cmt)
=> tam giác AHB = tam giác AHC (2 cạnh góc vuông)
=> ABH^ = ACH^
Mặt khác, OBC^ = OCB^ (tam giác BOC cân tại O, OB=R=OC)
Mà OBC^ + ABH^ = 90o (Ax là tiếp tuyến)
=> OCB^ + ACH^ = 90o => ACO^ = 90o => AC là tiếp tuyến (O)
c) Xét tam giác BCD:
CD là đường kính (gt) => O là trung điểm CD
Mà H là trung điểm BC (cmt)
=> OH là đường trung bình của tam giác BCD
=> OH // BD hay OA // BD
Δ
a: Xét ΔOAM vuông tại A có cos AOM=OA/OM=1/2
nên góc AOM=60 độ
=>góc AMO=30 độ
Xét ΔOAC có OA=OC và góc AOM=60 độ
nên ΔAOC đều
mà AH là đường cao
nên H là trung điểm của OC
ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
Xét tứ giác OACB có
H là trung điểm chung của OC và BA
OA=OB
Do đó: OACB là hình thoi
b: góc DAM=180 độ-góc HAM=180-60=120 độ
góc DAO=180-60=120 độ
góc OAM=360-120-120=120 độ
=>góc DAM=góc DAO=góc OAM
=>ΔODM đều
=>MO=MD
=>M nằm trên trung trực của OD
mà NK là trung trực của OD
nên M,N,K thẳng hàng
Xét tứ giác ABCO ta có:
AB // CO (gt) (1)
Mà : AB = O’B – O’A = 3 – 1 = 2 (cm)
Suy ra: AB = OC = 2 (cm) (2)
Từ (1) và (2) suy ra: ABCO là hình bình hành
Lại có: OA ⊥ O’A (tính chất tiếp tuyến)
Suy ra: BC ⊥ OC và BC ⊥ O’B
Vậy BC là tiếp tuyến chung của hai đường tròn (O) và (O’)