K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: SA là tiếp tuyến của (O) với A là tiếp điểm

=>SA\(\perp\)AO tại A

=>ΔSAO vuông tại A

ΔSAO vuông tại A

=>\(AO^2+AS^2=OS^2\)

=>\(AS^2=5^2-3^2=16\)

=>SA=4(cm)

b: Xét ΔAOS vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot OS=AO\cdot AS\\OH\cdot OS=OA^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\\OH=\dfrac{3^2}{5}=1,8\left(cm\right)\end{matrix}\right.\)

Xét ΔSAO vuông tại A có \(sinASO=\dfrac{OA}{OS}=\dfrac{3}{5}\)

nên \(\widehat{ASO}\simeq37^0\)

c: Xét (O) có

SA,SB là tiếp tuyến

Do đó: SA=SB

mà OA=OB

nên OS là trung trực của AB

=>OS\(\perp\)AB

mà AH\(\perp\)OS
và AH và AB có điểm chung là A

nên A,H,B thẳng hàng

d: Gọi M là trung điểm của SD

CD\(\perp\)CA

SA\(\perp\)CA

Do đó: CD//SA

Xét hình thang ASDC có

O,M lần lượt là trung điểm của AC,DS

=>OM là đường trung bình 

=>OM//SA//DC

=>OM\(\perp\)CA

OM//SA

=>\(\widehat{MOS}=\widehat{OSA}\)

mà \(\widehat{OSA}=\widehat{MSO}\)

nên \(\widehat{MOS}=\widehat{MSO}\)

=>MO=MS

mà MS=MD

nên MO=SD/2

Xét ΔODS có

OM là đường trung tuyến

OM=SD/2

Do đó: ΔODS vuông tại O

=>O nằm trên đường tròn  tâm M, đường kính SD

Xét (M) có

OM là bán kính 

AC\(\perp\)OM tại O

Do đó: AC là tiếp tuyến của (M)

23 tháng 2 2018

a) A,M, B.                      

b) N, E.               

c) Q, P.

d) MA, MB.                  

e) AB

11 tháng 8 2017

a) A, B, C, D                 

b) G, H                

c) I, F

d) AB, CD

e) BE

10 tháng 4 2018

a) A, B, C, D         

b) G, H                

c) I, F

d) AB, CD

e) BE.

30 tháng 10 2018

a) A,M, B.

b) N, E.

c) Q, P.

d) MA, MB.

e) AB

30 tháng 5 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Đường tròn (O’) tiếp xúc trong với đường tròn (O).

28 tháng 6 2017

a) M, BN, C, D              

b) B, K                

c) A, I, G

d)  CN

e) MN

17 tháng 9 2019

a) M, BN, C, D

b) B, K                

c) A, I, G

d)  CN

e) MN.