Cho n thuoc N chung minh (22n+1;30n+1)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n không chia hết cho 3 thì n:3 dư 1 hoặc dư 2
Nếu n:3 dư 1 thì 2n+1 chia hết cho 3
Nếu n:3 dư 2 thì n+1 chia hết cho 3
Suy ra n.(n+1)(2n+1) chia hết cho 3 với mọi n là số tự nhiên
Vậy n.(n+1).(2n+1) chia hết cho 3 với mọi số n
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Đáp số: n=28.
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
Được cập nhật Bùi Văn Vương
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
#)Giải :
Giả sử cả A và B đều chia hết cho 5
=> a - b chia hết cho 5
=> 22n + 1 + 22n + 1 + 1 - (22n + 1 - 22n + 1 + 1) = 2.22n + 1 chia hết cho 5
=> 22n + 1 chia hết cho 5
Nhưng vì 22n + 1 có tận cùng là 0 và 5 nên điều này không thể xảy ra
=> Phải có ít nhất A(n) hoặc B(n) không chia hết cho 5, số còn lại chia hết cho 5
=> đpcm
-Ta có: \(2^{4n}=16^n=\overline{...6}\)
\(\Rightarrow2^{4n}.4=\overline{...6}.4\)
\(\Rightarrow2^{4n+2}=\overline{...4}\)
\(A.B=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)
\(=\left[\left(2^{2n+1}+1\right)+2^{n+1}\right]\left[\left(2^{2n+1}+1\right)-2^{n-1}\right]\)
\(=\left(2^{2n+1}+1\right)^2-2^{2.\left(n+1\right)}\)
\(=2^{4n+2}+2^{2n+1}.2+1-2^{2n+2}\)
\(=2^{4n+2}+1=\overline{...4}+1=\overline{...5}⋮5\)
-Như vậy, thì \(A⋮5\) hay \(B⋮5\).
-Còn về hai số đó có thể cùng chia hết cho 5 không thì mình chưa làm được.
-Chứng minh hai số đó không thể cùng chia hết cho 5:
-Vì \(\left(A.B\right)⋮5\) nên sẽ có 1 trong hai số chia hết cho 5. Vì A,B có vai trò giống nhau nên giả sử số đó là A.
-Ta chứng minh \(\left(A+B\right)\) không chia hết cho 5 thì \(B\) cũng không chia hết cho 5.
\(A+B=\left(2^{2n+1}+2^{n+1}+1\right)+\left(2^{2n+1}-2^{n+1}+1\right)\)
\(=2.2^{2n+1}+2=2\left(2^{2n+1}+1\right)\)
-Ta có: \(2^{2n}=4^n\).
+Nếu \(n=2k\) thì \(4^n=4^{2k}=16^k=\overline{...6}\Rightarrow4^n.2+1=\overline{...2}+1=\overline{...3}\) không chia hết cho 5.
+Nếu \(n=2k+1\) thì \(4^n=4^{2k+1}=16^k.4=\overline{...6}.4=\overline{...4}\)
\(\Rightarrow4^n.2+1=\overline{...8}+1=\overline{...9}\).
\(\Rightarrow\) Với mọi giá trị của n thì \(4^n.2+1=2^{2n+1}+1\) không chia hết cho 5.
\(\Rightarrow2\left(2^{2n+1}+1\right)\) không chia hết cho 5 hay \(A+B\) không chia hết cho 5.
\(\Rightarrow B\) không chia hết cho 5.
-Vậy.................
5 - 1 chia hết cho 4 suy ra 5n- 1 chia hết cho 4. tick cho mk ddj!