K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2015

Dễ lắm, bạn thử suy nghĩ đi!

21 tháng 2 2017

Gọi d là  UCLN của tử và mẫu

12n+1 chia hết cho d                  60n+5 chia hết cho d

                                =>

30n+2 chia hết cho d                  60n+4 chia hết cho d

=>(60n+5)-(60n+4) chia hết cho d

=> 1 chia hết cho d

d thuộc Ư(1)=1

ƯCLN(12n+1;30n+2)=1

Vậy 12n+1/30n+2 là p/s tối giản

8 tháng 11 2015

Bạn xem ở đây: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath hoặc 

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

8 tháng 11 2015

Gọi d = ƯCLN (12n + 1, 30n + 1)

=> 12n + 1 chia hết cho d

và 30n + 1 chia hết cho d

=> 5(12n + 2) = 60n + 10 chia hết cho d

và 2(30n + 1) = 60n + 2 chia hết cho d

=> (60n + 10) - (60n + 2) = 8   chia hết cho d => d = 1, 2, 4 hoặc 8

Do 12n + 1 là số lẻ nên d không thể bằng 2, 4, 8 . vậy d = 1

=> phân số đã cho là phân số tối giản 

3 tháng 5 2019

a, Gọi d là ƯC(12n + 1; 30n + 2 ), ta có :

12n + 1 chia hết cho d => 5( 12n + 1 ) chia hết cho d

30n + 2 chia hết cho d => 2 ( 30n + 2 ) chia hết cho d

-> 5( 12n + 1 ) - 2( 30n + 2 ) chia hết cho d

=> 1 chia hết cho d

vậy d = 1 nên 12n + 1 và 30n + 2 nguyên tố cùng nhau

=> \(\frac{12n+1}{30n+2}\)là phân số tối giản

3 tháng 5 2019

b, ta có : \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

.....

\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

12 tháng 7 2015

a/

\(Q\left(2\right).Q\left(-1\right)=\left(4a+2b+c\right)\left(a-b+c\right)=\left(5a+b+2c-a+b-c\right)\left(a-b+c\right)\)

\(=\left(-a+b-c\right)\left(a-b+c\right)=-\left(a-b+c\right)^2\le0\)

b/

Q(x) = 0 với mọi x, suy ra các điều sau:

\(\Rightarrow Q\left(0\right)=c=0\)\(Q\left(1\right)=a+b+c=a+b=0\)\(Q\left(-1\right)=a-b+c=a-b=0\)

\(\Rightarrow\left(a+b\right)+\left(a-b\right)=0\text{ và }\left(a+b\right)-\left(a-b\right)=0\)\(\Leftrightarrow2a=0\text{ và }2b=0\Leftrightarrow a=b=0\)

Vậy \(a=b=c=0\)

16 tháng 10 2016

abab=ab.100+ab=ab.101 chia hết cho 101 nên là bội của 101 

b) aaabbb=aaa.1000+bbb=a.111.1000+b.111=111(1000a+b) chia hết cho 37 ( vì 111 chia hết cho 37) 

16 tháng 10 2016

a)\(abab=ab\cdot100+ab\cdot1=ab\cdot101\)

Vì \(101⋮101\Rightarrow ab\cdot101⋮101\Rightarrow abab⋮101\)

=>abab là bội của 101

b)\(aaabbb=111000\cdot a+b\cdot111\)

Mà \(111000⋮37\)\(111⋮37\)

\(\Rightarrow aaabbb⋮37\)

=>37 là ước aaabbb

 

24 tháng 5 2016

Gọi UCLN(2n +5; 3n +7) là d \(\left(d\ge1\right)\)

=> 2n +5 chia hết cho d ; 3n+7 chia hết cho d

=> 3n+7 - (2n+5) = n + 2 chia hết cho d 

=> 2n+4) chia hết cho d

mà 2n+5 = (2n+4) +1 chia hết cho d

=> 1 chia hết cho d 

=> \(d\le1\)mà \(d\ge1\)=> d = 1

Vậy UCLN(2n+5 ; 3n+7) = 1

24 tháng 5 2016

Gọi d làƯCLN (2n + 5; 3n + 7)

=> 2n + 5  chia hết cho d => 3.(2n + 5) = 6n + 15 chia hết cho d (1) 

=> 3n + 7 chia hết cho d => 2.(3n + 7) = 6n + 14 chia hết cho d (2)

Từ (1) và (2) => (6n + 15) - (6n + 14) = 6n + 15 - 6n - 14 = 1 chia hết cho d

=> d = 1

=>ƯWCLN (2n + 5; 3n + 7) = 1 (Đpcm).

9 tháng 4 2020

1/1.2 +1/2.3 +1/3.4 +...+ 1/49.50

=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50

=1-1/50<1

9 tháng 4 2020

1/1.2 + 1/2.3 +1/3.4 + ... + 1/49.50 ( chỗ này 49.50 chứ ko phải 49+50 đâu nha)

= 1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50 (-1/2+1/2 là hết cứ như z thì chỉ còn lại 1-1/50)

=1-1/50 <1