Cho ba điểm M(1;2;-2), N(3;2;1), P(1;3;3). Gọi M',N',P' lần lượt là hình chiếu của M,N,P trên Ox, Oy, Oz. Phương trình mặt phẳng (M'N'P') là
A. 6x+3y+2z-6=0
B. 6x+3y+2z=0
C. 6x-3y+2z-6=0
D. 6x+3y-2z-6=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hai bộ ba điểm: M = (1; 1; 1), N = (-4; 3; 1), P = (-9; 5; 1). Hỏi bộ nào có ba điểm thẳng hàng?
Ta có: MN → = (−5; 2; 0) và MP → = (−10; 4; 0). Hai vecto MN → và MP → thỏa mãn điều kiện: MN → = k MP → với k = k/2 nên ba điểm M, N, P thẳng hàng.
Ta có P ∈ O x nên P( x; 0) và M P → = x + 2 ; − 2 M N → = 3 ; − 1 .
Do M, N, P thẳng hàng nên 2 vecto M P → ; M N → cùng phương
⇒ x + 2 3 = − 2 − 1 = 2 ⇔ x + 2 = 6 ⇔ x = 4 ⇒ P 4 ; 0 .
Chọn D.
Ta có P ∈ O x nên P(x; 0) và M P → = x + 2 ; − 2 M N → = 3 ; − 1 .
Do M, N, P thẳng hàng nên x + 2 3 = − 2 − 1 ⇔ x = 4 ⇒ P 4 ; 0 .
Chọn D.
Kẻ BE//DK(E\(\in\)AK)
Xét ΔADK có
B là trung điểm của AD
BE//DK
Do đó: E là trung điểm của AK
=>AE=EK
Xét ΔADK có B,E lần lượt là trung điểm của AD,AK
nên BE là đường trung bình của ΔADK
=>\(BE=\dfrac{1}{2}DK\)
Xét ΔBEC có
M là trung điểm của CB
MK//BE
Do đó: K là trung điểm của CE
Xét ΔBEC có
M,K lần lượt là trung điểm của CB,CE
=>MK là đường trung bình của ΔBEC
=>\(MK=\dfrac{1}{2}BE=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot DK=\dfrac{1}{4}\cdot DK\)
Giao điểm của AB và CD chính là điểm M thỏa mãn đề bài.
Một lẽ dĩ nhiên là nếu AB song song với CD thì ta không thể tìm được giao điểm của chúng, dẫn đến không tìm được điểm M theo yêu cầu.
a)
b) Gấp tờ giấy sao cho nếp gấp đi qua hai điểm, vẽ điểm thứ ba thuộc nếp gấp vừa gấp được.