trong oxy cho tam giac ABC co A(1;1), B(-3;2), C(-1;3) va duong thang (d): 2x-y+3=0 viet phuong trinh duong thang delta di qua trong tam G cua tam giac ABC va song song voi duong thang (d)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi G là trọng tâm tam giác \(\Rightarrow G\left(1;1\right)\)
\(\overrightarrow{BC}=\left(1;4\right)\Rightarrow\) đường thẳng d nhận \(\left(1;4\right)\) là 1 vtpt
Phương trình d:
\(1\left(x-1\right)+4\left(y-1\right)=0\Leftrightarrow x+4y-5=0\)
Câu 2:
Có 2 trường hợp thỏa mãn:
- Đường thẳng đi qua M và trung điểm AB
- Đường thẳng qua M và song song AB
TH1:
Gọi N là trung điểm AB \(\Rightarrow N\left(-1;2\right)\Rightarrow\overrightarrow{MN}=\left(-11;0\right)\)
\(\Rightarrow\) Đường thẳng MN nhận \(\left(0;1\right)\) là 1 vtpt
Phương trình MN:
\(0\left(x-10\right)+1\left(y-2\right)=0\Leftrightarrow y-2=0\)
TH2: \(\overrightarrow{AB}=\left(-8;4\right)=-4\left(2;-1\right)\)
Đường thẳng d song song AB nên nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình d:
\(1\left(x-10\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-14=0\)
\(\overrightarrow{AB}=\left(2;4\right);\overrightarrow{AC}=\left(11;-2\right);\overrightarrow{BC}=\left(9;-6\right)\)
\(\Rightarrow AB=2\sqrt{5};AC=5\sqrt{5};BC=3\sqrt{13}\)
Gọi D là chân đường phân giác trong góc A trên BC
\(\frac{DB}{DC}=\frac{AB}{AC}=\frac{2}{5}\Rightarrow BD=\frac{2}{5}CD=\frac{2}{7}BC\Rightarrow\overrightarrow{BD}=\frac{2}{7}\left(9;-6\right)\)
\(\Rightarrow D\left(\frac{46}{7};\frac{44}{7}\right)\Rightarrow\overrightarrow{AD}=\left(\frac{32}{7};\frac{16}{7}\right)=\frac{16}{7}\left(2;1\right)\)
\(\Rightarrow\) Đường thẳng AD nhận \(\left(1;-2\right)\) là 1 vtpt
Phương trình AD:
\(1\left(x-2\right)-2\left(y-4\right)=0\Leftrightarrow x-2y+6=0\)
2.
Đường thẳng d có 1 vtpt là \(\left(1;3\right)\)
Gọi vtpt của d' là \(\left(a;b\right)\Rightarrow cos45^0=\frac{\left|a+3b\right|}{\sqrt{10\left(a^2+b^2\right)}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow a^2+6ab+9b^2=5a^2+5b^2\)
\(\Leftrightarrow4a^2-6ab-4b^2=0\Leftrightarrow\left(2a+b\right)\left(a-2b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}b=-2a\\a=2b\end{matrix}\right.\)
Chọn \(a=2\Rightarrow\left[{}\begin{matrix}b=-4\\b=1\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}1\left(x+2\right)-2\left(y-0\right)=0\\2\left(x+2\right)+1\left(y-0\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2y+2=0\\2x+y+4=0\end{matrix}\right.\)
a: vecto BC=(2;7)
=>AH có vtpt là (2;7)
Phương trình AH là:
2(x-2)+7(y-1)=0
=>2x-4+7y-7=0
=>2x+7y-11=0
b: \(IB=\sqrt{\left(3-1\right)^2+\left(1+5\right)^2}=\sqrt{40}\)
Phương trình (C) là:
(x-3)^2+(y-1)^2=40
1) Trong he toa do Oxy, cho tam giac ABC co A(2;2), B(-5;3), C(-2;4). Goi H (x;y) la hinh chieu cua dinh A len duong thang BC. Tinh gia tri cua bieu thuc P = x2 + y2
Giải
- H là hình chiếu của A lên BC nên ta có: \(\overrightarrow{AH}.\overrightarrow{BC}=0\)
=> 3.(x-2) + 1.(y-2) = 0 <=> 3x + y =8 (1)
- H nằm trên đoạn BC nên : B,H,C thẳng hàng.
=> BH = kBC
=> \(\dfrac{x+5}{3}=\dfrac{y-3}{1}=x-3y=-14\)(2)
Từ (1) và (2) ta có hệ phương trình, giải hệ ta được: x=1, y=5.
Suy ra : x^2 + y^2 = 26 chọn B.
Đi tìm kho báu vòng 8, nhập 6 là đúng nhưng ViOlympi báo sai. Vì vậy muốn biết đáp án của ViOlympi thì tick mình đi rồi mình nói cho