a) Viết pt đường thẳng y =ax +b biết đồ thị của nó đi qua điểm S (2;3) và cắt trục tọa độ tại hai điểm M,N sao cho tam giác OMN có diện tích bằng 2
b) Tìm m để đồ thị hàm số y=m2x +m +1 tạo vs các trục tọa độ một tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đồ thị hàm số của đường thẳng y = ax + b đi qua điểm A (2; 1).
\(\Rightarrow1=2a+b.\) (1)
Xét phương trình hoành độ giao điểm của hai đường thẳng y = -x và y = -2x + 1, ta có:
\(-x=-2x+1.\\ \Leftrightarrow x-2x+1=0.\\\Leftrightarrow\left(x-1\right)^2=0. \\ \Leftrightarrow x=1.\\ \Rightarrow y=-1.\)
\(\Rightarrow\) B (1; -1).
Đồ thị hàm số của đường thẳng y = ax + b đi qua điểm B (1; -1).
\(\Rightarrow-1=a+b.\) (2)
Từ (1); (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}1=2a+b.\\-1=a+b.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=1.\\a+b=-1.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2.\\b=-3.\end{matrix}\right.\)
\(\Rightarrow y=2x-3.\)
Lời giải:
Vì đường thẳng \((y=ax+b)\parallel (y=\frac{1}{2}x-1)\Rightarrow a=\frac{1}{2}\)
Mà \(M(-2;3)\in (y=ax+b)\) nên \(3=\frac{1}{2}(-2)+b\Rightarrow b=4\)
Do đó PTĐT là \(y=\frac{1}{2}x+4\)
Lời giải
a) A(-1;2)
=> y(-1) =2 <=> a.(-1)^2 =2 => a=2
hàm số được xác định y=2x^2
b) xác đinh tọa độ điểm B
2x^2 =8 => x =+-2
=>có 2 điểm B thỏa mãn
B(2,8) và B'(-2;8)
(d): y=a'x+b'
(d) đi qua A => 2=-a'+b' => b' =2+a'
hay d: y=a'(x+1)+2
(d) đi qua B(2,8) => 8=a'(2+1) +2 => a'=2
(d) đi qu B(-2,8) =>8=a'(-2+1) +2 => a' =-6
vậy
có hai đường thẳng thỏa mãn đầu bài là
d1: y=2x+4
d2:y=-6x-4
đồ thị