K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

5:

Gọi (d): y=ax+b là phương trình cần tìm

Theo đề, ta có hệ:
3a+b=-1 và 2a+b=3

=>a=-4 và b=11

=>y=-4x+11

4:

vecto BC=(1;-1)

=>AH có VTPT là (1;-1)

Phương trình AH là:

1(x-1)+(-1)(y+3)=0

=>x-1-y-3=0

=>x-y-4=0

10 tháng 5 2023

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6

 

a) Vì (d): y=ax+b//y=3x+1 nên \(\left\{{}\begin{matrix}a=3\\b\ne1\end{matrix}\right.\)

Suy ra: (d): y=3x+b

Thay x=2 và y=-2 vào (d), ta được:

\(3\cdot2+b=-2\)

\(\Leftrightarrow b=-8\)(thỏa ĐK)

Vậy: (d): y=3x-8

b) Để (d) vuông góc với y=2x+3 nên \(2a=-1\)

hay \(a=-\dfrac{1}{2}\)

Vậy: (d): \(y=\dfrac{-1}{2}x+b\)

Thay x=-3 và y=4 vào (d), ta được:

\(\dfrac{-1}{2}\cdot\left(-3\right)+b=4\)

\(\Leftrightarrow b+\dfrac{3}{2}=4\)

hay \(b=\dfrac{5}{2}\)

Vậy: (d): \(y=\dfrac{-1}{2}x+\dfrac{5}{2}\)

10 tháng 3 2022

Gọi đường thẳng đi qua A là d'.

a) Ta có: \(d'\perp d.\)

\(\Rightarrow\) VTPT của d là VTCP của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)

b) Ta có: \(d'//d.\)

\(\Rightarrow\) VTPT của d là VTPT của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)

18 tháng 12 2023

a: Gọi phương trình đường thẳng cần tìm là (d): y=ax+b(a<>0)

Vì (d)//y=3x+2 nên \(\left\{{}\begin{matrix}a=3\\b\ne2\end{matrix}\right.\)

Vậy: (d): y=3x+b

Thay x=1 và y=2 vào (d), ta được:

\(b+3\cdot1=2\)

=>b+3=2

=>b=-1

vậy: (d): y=3x-1

b: Gọi phương trình đường thẳng cần tìm là (d): y=ax+b(a<>0)
Vì (d) có tung độ gốc là 3 nên b=3

=>(d): y=ax+3

Thay x=-4 và y=7 vào (d), ta được:

\(-4a+3=7\)

=>-4a=4

=>a=-1

vậy: (d): y=-x+3

c: A(1;4); B(4;8)

=>\(AB=\sqrt{\left(4-1\right)^2+\left(8-4\right)^2}\)

=>\(AB=\sqrt{3^2+4^2}=\sqrt{25}=5\)

c: y=2x-6

=>2x-y-6=0

Khoảng cách từ A(-3;2) đến đường thẳng 2x-y-6=0 là;

\(d\left(A;2x-y-6=0\right)=\dfrac{\left|\left(-3\right)\cdot2+2\left(-1\right)-6\right|}{\sqrt{2^2+\left(-1\right)^2}}\)

\(=\dfrac{\left|-6-2-6\right|}{\sqrt{5}}=\dfrac{14}{\sqrt{5}}\)

18 tháng 5 2017

Gọi phương trình đường thẳng d cần tìm là  y   =   a x   +   b   ( a   ≠   0 )

Thay tọa độ điểm A vào phương trình đường thẳng d ta được  3 a   +   b   =   3   ⇒   b   = 3   –   3 a

Thay tọa độ điểm B vào phương trình đường thẳng d ta được   − 1 . a   +   b   =   4   ⇒   b   =   4   +   a

Suy ra  3   −   3 a   =   4   +   a   ⇔   4 a   =   − 1 ⇔ a = − 1 4 ⇒ b = 4   +   a   =   4   +   1 4

  = 15 4 ⇒ y = − 1 4 x + 15 4

Vậy d: y = − 1 4 x + 15 4

Đáp án cần chọn là: B

19 tháng 12 2021

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x+3=-3x-2\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

20 tháng 12 2021

\(a,\text{PT hoành độ giao điểm: }2x+3=-3x-2\Leftrightarrow x=-1\Leftrightarrow y=1\Leftrightarrow A\left(-1;1\right)\\ b,\text{Gọi đt đó là }y=ax+b\\ \Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\a=-1;b\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\Leftrightarrow y=-x\\ d,\text{Gọi đt cần tìm là }y=ax+b\\ \Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-1\end{matrix}\right.\Leftrightarrow y=-2x-1\)

21 tháng 12 2021

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x+3=-3x-2\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)