cho tam giác abc vuông tại a đường cao ah. d là trung điểm ab, e là trung điểm ah, f là giao của đường trung trực của ab với ce.f(-1;3) pt bc:x-2y+1=0. biết d thuộc đt 3x+5y+0 và hoành độ nguyên tìm a,b,c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE
a: Xét tứ giác ABDE có
H là trung điểm chung của AD và BE
=>ABDE là hình bình hành
Hình bình hành ABDE có AD\(\perp\)BE
nên ABDE là hình thoi
b: Ta có: ABDE là hình thoi
=>DE//AB
Ta có: DE//AB
AB\(\perp\)AC
Do đó: DE\(\perp\)AC tại F
Xét ΔCAD có
CH,DF là các đường cao
CH cắt DF tại E
Do đó: E là trực tâm của ΔCAD
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
ΔHAC vuông tại H
mà HE là trung tuyến
nên EA=EH
EA=EH
DA=DH
=>ED là trung trực của AH