K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

2x+3y  =xy

nêu khác 0 thi xy lẻ  nên x lẻ y lẻ vì 3y lẻ vói mọi y. suy ra x-y chẵn trái giả thiết

nế x=0 thi 3y=0 không có y thỏa mạn

vạy ko co x, y thỏa mạn bài toán

24 tháng 5 2017

Giải:

Ta có: \(5x-17y=2xy\)

\(\Rightarrow5x-17y=2\left(2x+3y\right)\)

\(\Rightarrow5x-17y=4x+6y\)

\(\Rightarrow11x=23y\)

\(\Rightarrow\frac{x}{23}=\frac{y}{11}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{23}=\frac{y}{11}=\frac{x-y}{23-11}=\frac{5}{12}\)

\(\Rightarrow x=\frac{115}{12};y=\frac{55}{12}\)

Vậy...

24 tháng 5 2017

Bạn kiểm tra lại nhé, bài này mk ko chắc lắm đâu, có thể bị sai nhé

a: =>xy-x+y=0

=>x(y-1)+y-1=-1

=>(y-1)(x+1)=-1

=>(x+1;y-1) thuộc {(1;-1); (-1;1)}

=>(x,y) thuộc {(0;0); (-2;2)}

b: =>x(y+2)+y-1=0

=>x(y+2)+y+2-3=0

=>(y+2)(x+1)=3

=>(x+1;y+2) thuộc {(1;3); (3;1); (-1;-3); (-3;-1)}

=>(x,y) thuộc {(0;1); (2;-1); (-2;-5); (-4;-3)}

c:

y>=3

=>y+5>=8

=>y(x-7)+5x-35=-35

=>(x-7)(y+5)=-35

mà y+5>=8

nên (y+5;x-7) thuộc (35;-1)

=>(y;x) thuộc {(30;6)}

11 tháng 1 2022

a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)

Ta có bảng:

x-3-1-515
2y-6-5-151
x2-248
y\(\dfrac{1}{2}\left(loại\right)\)\(\dfrac{5}{2}\left(loại\right)\)\(\dfrac{11}{2}\left(loại\right)\)\(\dfrac{7}{2}\left(loại\right)\)

Vậy không có x,y thỏa mãn đề bài 

b, tương tự câu a

 \(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)

Rồi làm tương tự câu a

\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)

Rồi làm tương tự câu a

 

Bài toán 1. So sánh: 200920 và 2009200910Bài toán 2. Tính tỉ số , biết:Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3  + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 5. Chứng minh rằng:Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 -...
Đọc tiếp

Bài toán 1. So sánh: 200920 và 2009200910

Bài toán 2. Tính tỉ số \frac{A}{B}, biết:

Bài tập nâng cao Toán 7

Bài toán 3. Tìm x; y biết:

a. . 25 – y2 = 8( x – 2009)

b. xy = x y3  + 1997

c. x + y + 9 = xy – 7.

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 5. Chứng minh rằng:

Bài tập nâng cao Toán 7

Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x)2005

Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.

Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5

6
27 tháng 10 2021

Bài 11: 

Ta có: \(n^3-n^2+2n+7⋮n^2+1\)

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2-64⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;5;13;65\right\}\)

\(\Leftrightarrow n^2\in\left\{0;4;64\right\}\)

hay \(n\in\left\{0;-2;2;8;-8\right\}\)

27 tháng 10 2021

cái này mà lớp 1 hả cj xu???

c: =>x+y-xy=-16

=>x+y-xy-1=-17

=>x(1-y)-(1-y)=-17

=>(1-y)(x-1)=-17

=>(x-1;y-1)=17

=>(x-1;y-1) thuộc {(1;17); (17;1); (-1;-17); (-17;-1)}

=>(x,y) thuộc {(2;18); (18;2); (0;-16); (-16;0)}

b: Tham khảo:

loading...

5 tháng 9 2023

ck giúp mình với

 

Bài toán 3

a. 25 - y^2 = 8(x - 2009)

Ta có thể viết lại như sau:

y^2 - 8(x - 2009) + 25 = 0

Đây là phương trình bậc hai với hệ số thực.

Ta có thể giải phương trình này như sau:

y = (8x - 1607 ± √(8x - 1607)^2 - 4 * 1 * 25) / 2 y = (4x - 803 ± √(4x - 803)^2 - 200) / 2 y = 2x - 401 ± √(2x - 401)^2 - 100

Ta thấy rằng nghiệm của phương trình này là xấp xỉ 2009 và -2009.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = 2009 và y = 0.

b. x^3 y = x y^3 + 1997

Ta có thể viết lại như sau:

x^3 y - x y^3 = 1997 x y (x^2 - y^2) = 1997 x y (x - y)(x + y) = 1997

Ta có thể thấy rằng x và y phải có giá trị đối nhau.

Vậy, nghiệm của phương trình này là x = y = 1997/2 = 998,5.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = y = 998.

c. x + y + 9 = xy - 7

Ta có thể viết lại như sau:

x - xy + y + 16 = 0

Đây là phương trình bậc hai với hệ số thực.

Ta có thể giải phương trình này như sau:

x = (xy - 16 ± √(xy - 16)^2 - 4 * 1 * 16) / 2 x = (y - 4 ± √(y - 4)^2 - 64) / 2 x = y - 4 ± √(y - 4)^2 - 32

Ta thấy rằng nghiệm của phương trình này là xấp xỉ 8 và -8.

Tuy nhiên, trong bài toán, x và y là số tự nhiên.

Vậy, nghiệm của phương trình này là x = 8 và y = 12.

Bài toán 4

Ta có thể chứng minh bằng quy nạp.

Cơ sở

Khi n = 2, ta có:

x1.x2 + x2.x3 = 0

Vậy, x1.x2 + x2.x3 + ...+ xn.x1 = 0 khi n = 2.

Bước đệm

Giả sử rằng khi n = k, ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = 0

Bước kết luận

Xét số tự nhiên n = k + 1.

Ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = x1.x2 + x2.x3 + ...+ xn.x1 + xn.x1

Theo giả thuyết, ta có:

x1.x2 + x2.x3 + ...+ xn.x1 = 0

Vậy, xn.x1 = -(x1.x2 + x2.x3 + ...+ xn.x1) = 0.

Như vậy, ta có:

x1.x2 + x2.x3 + ...+ xn.x1   shareGoogle it
5 tháng 9 2023

???

bn lấy nó đâu ra dz batngo

Bài 1:  Tìm x  biết:a./               b./               c*./    Bài 2:   Tìm x, y, z biết :     a/               b/          c/    =                          d/                         e/  =  và x + y = 22       f/     và Bài 3: Tìm x, y  biết:a) x : 3 = 4 : 5                   b)  (x+2).(x-3) = 0                 c)   x2 – 3x = 0          d)      e) 9x =81             f)                   h)  và  x + y=  -21      i)  và  3x - 2y = -2k*) 2x = 3y = 5z và x + 2y – z =...
Đọc tiếp

Bài 1:  Tìm x  biết:

a./               b./               c*./    

Bài 2:   Tìm x, y, z biết :     a/               b/          c/    =                          

d/                         e/  =  và x + y = 22       f/     và

Bài 3: Tìm x, y  biết:

a) x : 3 = 4 : 5                   b)  (x+2).(x-3) = 0                 c)   x2 – 3x = 0          d)      e) 9x =81             

f)                   h)  và  x + y=  -21      i)  và  3x - 2y = -2

k*) 2x = 3y = 5z và x + 2y – z = 29                               l*)  và 3x – 2y – z = -29

0
11 tháng 10 2021

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{11}=3\)

Do đó: x=6; y=9; z=15

31 tháng 1 2020

ta có : a) xy- 5x + y = 17

           =) x . ( y - 5 ) . ( y - 5 ) = 17 - 5

          =) (x+1) . ( y - 5 ) = 12

=) x + 1 \(\in\) { 12 ; 6 ; 3 ; 2 ; 1 ; 4 }

=) x \(\in\){ 11 ; 5 ; 2 ;1 ; 0 ; 3 }

=)  y - 5 \(\in\){ 12 ; 6 ; 3 ; 2 ; 1 ; 4 }

=) y \(\in\){ 17 ; 11 ; 8  ; 7 ; 6 ; 9 }

vậy ta có  6 TH x,y là : ( 0 ; 17 ) , ( 1 ; 11 ) , ( 2 ; 9 ) , ( 11 ; 6 ) , ( 5 ; 7 ) , ( 3 ; 8 )

31 tháng 1 2020

Bài giải

a) xy - 5x + y = 17

    x(y - 5) + y = 17

    x(y - 5) + y - 5 = 17 - 5 = 12

    x(y - 5) + (y - 5) = 12

    x(y - 5) + 1(y - 5) = 12

    (x + 1)(y - 5) = 12

Bạn tự làm tiếp nha, xem số nào nhân với số nào bằng 12 rồi làm tiếp.

b) 3x + 4y - xy = 15

    3x + (4y - xy) = 15

    3x + y(4 - x)   = 15

    12 - [3x + y(4 - x)] = 12 - 15 = -3

    12 - 3x - y(4 - x) = -3              (12 - 3x = 3.4 - 3x = 3(4 - x))     

    3(4 - x) - y(4 - x) = -3

    (3 - y)