K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 10

Lời giải:

Ta có:

$21+51 = x+5y+(2x+3z)=3x+5y+3z$

$\Rightarrow 72=3(x+y+z)+2y\geq 3(x+y+z)$
$\Rightarrow x+y+z\leq 24$
Vậy $x+y+z$ có GTLN là $24$

Giá trị này đạt tại $(x,y,z)=(21,0,3)$

20 tháng 7 2016

Theo đầu bài ta có:
\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)
\(=\frac{-5x+-5y+-5z}{21}\)
\(=\frac{-5\left(x+y+z\right)}{21}\)
\(=\frac{-5\left(-z+z\right)}{21}\)
\(=\frac{-5\cdot0}{21}\)
\(=\frac{0}{21}=0\)

20 tháng 7 2016

\(A=\frac{-5x}{21}+\frac{-5y}{21}+\frac{-5z}{21}\)

=>\(A=\frac{\left(-5x\right)+\left(-5y\right)+\left(-5z\right)}{21}\)

=>\(A=\frac{\left(-5\right)\left(x+y+z\right)}{21}\)

=>\(A=\frac{\left(-5\right)\left(-z+z\right)}{21}\)

=>\(A=\frac{\left(-5\right).0}{21}\)

=>\(A=\frac{0}{21}\)

=>A=0

10 tháng 4 2017

đề nga sơn kaka , anh vừa làm xong , 3x+5y+3z=51+21

3.(x+y+z)=72-2y

x+y+z=72-2y/3

x+y+z bé hơn hoạc bằng 24

/x+y+z/^2 bé hơn hoạc bằng 24^2 , dấu bằng xảy ra khi nào ???????

2 tháng 8 2019

A = \(\frac{-5x}{21}\)+  \(\frac{-5y}{21}\)\(\frac{-5x}{21}\)

    = \(\frac{\left(-5x\right)+\left(-5y\right)+\left(-5x\right)}{21}\)

    vì x + y là số dõi của z 

=> x + y + z = 0 

=> \(\frac{5.\left(x+y+z\right)}{21}\)

\(\frac{-5}{21}\).  0 = 0 

=> A = 0 

hok tốt !

11 tháng 9 2021

Thay -z=x+y vào biểu thức A ta có A=-5x/21+(-5y/21)+[5(x+y)/21] =>-5x/21 +(-5y/21)+(5x+5y)/21=>-5x/21+(-5y/21)+5x/21+5y/21 => A = 0

NV
8 tháng 1 2023

\(2x^2+3y^2+4z^2=21\Rightarrow2x^2\le21-3.1^2-4.1^2=14\)

\(\Rightarrow x\le\sqrt{7}\)

Tương tự ta có \(y\le\sqrt{5}\) và \(z\le2\)

Do đó:

\(\left(z-1\right)\left(z-2\right)\le0\Rightarrow z^2+2\le3z\Rightarrow4z^2+8\le12z\) (1)

\(\left(x-1\right)\left(2x-10\right)\le0\Rightarrow2x^2+10\le12x\) (2)

\(\left(y-1\right)\left(3y-9\right)\le0\Leftrightarrow3y^2+9\le12y\) (3)

Cộng vế (1);(2) và (3):

\(\Rightarrow12\left(x+y+z\right)\ge2x^2+3y^2+4z^2+27\ge48\)

\(\Rightarrow x+y+z\ge4\)

\(M_{min}=4\) khi \(\left(x;y;z\right)=\left(1;1;2\right)\)

NV
8 tháng 1 2023

Theo chứng minh ban đầu ta có: \(z\le2\Rightarrow z-2\le0\)

Theo giả thiết \(z\ge1\Rightarrow z-1\ge0\)

\(\Rightarrow\left(z-1\right)\left(z-2\right)\le0\)

Tương tự: \(x< \sqrt{5}< 5\Rightarrow x-5< 0\Rightarrow2x-10< 0\)

\(\Rightarrow\left(x-1\right)\left(2x-10\right)\le0\)

y cũng như vậy