Tìm số giá trị nguyên thuộc đoạn [-209;2019] của tham số m để đồ thị hàm số y = x - 3 x 2 + x - m có đúng hai đường tiệm cận
A. 2007
B. 2010
C. 2009
D. 2008
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t = log 3 2 x + 1 . Do 1 ≤ x ≤ 3 3 nên 1 ≤ t ≤ 2
Phương trình đã cho có ít nhất một nghiệm thuộc đoạn 1 ; 3 3
⇔ Phương trình t 2 - 1 + t - 2 m - 1 = 0 có ít nhất một nghiệm thuộc đoạn [ 1;2 ]
⇔ Phương trình t 2 + t - 2 = 2 m có ít nhất một nghiệm thuộc đoạn [ 1;2 ]
Xét hàm số f t = t 2 + t - 2 , t ∈ 1 ; 2
f ' t = 2 t + 1 > 0 , ∀ t ∈ 1 ; 2 ⇒ là hàm đồng biến trên [ 1;2 ] ⇒ f 1 ≤ f t ≤ f 2 ⇔ 0 ≤ m ≤ 2
Vậy có 3 giá trị nguyên của m thỏa mãn yêu cầu bài toán
Đáp án C
Chọn D.
Phương pháp:
+) Đường thẳng x = a được gọi là TCĐ của đồ thị hàm số
Đồ thị hàm số chỉ có đúng 2 đường tiệm cận ⇔ đồ thị hàm số có đúng 1 tiệm cận đứng.
Như vậy có: 2008 giá trị m thỏa mãn bài toán.
Ta có \(3x^3+13x^2-7x+5\)
= \(3x^3-2x^2+15x^2-10x+3x-2+7\)
= \(x^2\left(3x-2\right)+5x\left(3x-2\right)+\left(3x-2\right)+7\)
= \(\left(3x-2\right)\left(x^2+5x+1\right)+7\)
=> biểu thức ban đầu = \(x^2+5x+1+\frac{7}{3x-2}\)
Vì x nguyên nên x2 + 5x +1 nguyên
=> Để biểu thức nguyên thì 3x - 2 phải là ước của 7
Sau đó bạn tự giải tiếp nhé
Chúc bạn làm bài tốt
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Chọn B
Xét g(x) = x 4 - 4 x 3 + 4 x 2 + a với x ∈ [0;2]
Bảng biến thiên g(x)
Trường hợp 1: a ≥ 0. Khi đó M = a + 1; m = a
Ta có M ≤ 2m Với
Trường hợp 2: Khi đó M = -a; m = -(a+1)
Trường hợp 3: -1 < a < 0. Với
Vậy có 5 giá trị a cần tìm.