Biết điểm A \(\left(m^2;2-m^2\right)\) thuộc đò thị hàm số\(y=\frac{-1}{2}x\). Tính m2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB=căn 5
AB: (x-1)/1=(y-3)/-2
=>2x+y-5=0
M thuộc Δ nên M(m;2-m)
\(d\left(M;AB\right)=\dfrac{\left|m-3\right|}{\sqrt{5}}\)
\(S_{AMB}=\dfrac{1}{2}\cdot MH\cdot AB=4\)
=>|m-3|=8
=>m=11(nhận) hoặc m=-5(loại)
=>M(11;-9)
=>3a+5b=3*11+5*(-9)=-12
Theo đề ra ta có hệ :
\(\left\{{}\begin{matrix}\dfrac{4}{a^2}=1\\\dfrac{1}{a^2}+\dfrac{\dfrac{3}{4}}{b^2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\\dfrac{\dfrac{3}{4}}{b^2}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Vậy (a,b) = (2,1)
+,Ta có :A thuộc E => thay x=2 và y=0 vào E ta đc a^2=4 => a=2 (loại a=-2 vì a<0 )
+, Tương tự thay B vào E => 3b^2=3 =>b=1(loại b=-1 vì b <0)
=> vậy a =2 b =1
học tốt ! :)))
a) Thay y=8 vào \(\left(P\right):y=\frac{-x^2}{2}\):
\(8=\frac{-x^2}{2}\Rightarrow x=\pm4\)
Vậy M(4;8) hoặc (-4;8).
b) \(\frac{-x^2}{2}=x+m\)
\(\Leftrightarrow-x^2-2x-2m=0\)
\(\Leftrightarrow x^2+2x+2m=0\)
Để (d) cắt (P) tại 2 điểm pb thì Δ>0
\(\Rightarrow4-8m>0\Leftrightarrow m< \frac{1}{2}\)
Có: \(y_1=x_1+m;y_2=x_2+m\)
\(\Rightarrow\left(x_1+y_1\right)\left(x_2+y_2\right)=\frac{33}{4}\)
\(\Rightarrow\left(2x_1+m\right)\left(2x_2+m\right)=\frac{33}{4}\)
\(\Leftrightarrow4x_1x_2+2x_1m+2x_2m+m^2=\frac{33}{4}\)
\(\Leftrightarrow4x_1x_2+2m\left(x_1+x_2\right)+m^2=\frac{33}{4}\)
Theo hệ thức Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=2m\end{matrix}\right.\)
\(\Rightarrow8m-4m+m^2=\frac{33}{4}\)
\(\Leftrightarrow m^2+4m=\frac{33}{4}\)
\(\Leftrightarrow m^2+4m-\frac{33}{4}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\frac{3}{2}\left(KTM\right)\\m=\frac{-11}{2}\left(TM\right)\end{matrix}\right.\)
Vậy m=\(\frac{-11}{2}\) thỏa mãn.
a, Ta có : \(AB=OA-OB=a-b\left(cm\right)\)
b, Có lẽ là M trên tia Ox .
Ta có : \(OM=\dfrac{1}{2}\left(a+b\right)\)
=> M là trung điểm của AB .
a) 2(3x - 1) = 10
3x - 1 = 10 : 2
3x - 1 = 5
3x = 5 + 1
3x = 6
x = 6 : 3
x = 2
b) (3x + 4)² - (3x - 1)(3x + 1) = 49
9x² + 24x + 16 - 9x² + 1 = 49
24x + 17 = 49
24x = 49 - 17
24x = 32
x = 32 : 24
x = 4/3
a) \(2\left(3x-1\right)=10\)
\(3x-1=5\)
\(3x=6\)
\(x=2\)
b) \(\left(3x+4\right)^2-\left(3x-1\right)\left(3x+1\right)=49\)
\(9x^2+24x+16-9x^2+1=49\)
\(24x=49-1-16=32\)
\(x=\dfrac{32}{24}=\dfrac{4}{3}\)
\(y'=-3x^2+6mx+3\left(1-m^2\right)\)
Thực hiện phép chia \(y\) cho \(y'\) và lấy phần dư ta được phương trình đường thẳng đi qua 2 cực trị là: \(y=2x-m^2+m\)
Do \(A\in d\Rightarrow-2=2.2-m^2+m\Leftrightarrow-m^2+m+6=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-2\end{matrix}\right.\)
Đáp án đúng là đáp án C
a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m+3\right)x-5}{x+1}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m+3\right)x-5}{x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)
=>Đường thẳng y=2m+3 là đường tiệm cận ngang duy nhất của đồ thị hàm số \(y=\dfrac{\left(2m+3\right)x-5}{x+1}\)
Để đường thẳng y=2m+3 đi qua A(-1;3) thì 2m+3=3
=>2m=0
=>m=0
b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)
=>Đường thẳng \(y=m^2-3m\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)
=>\(m^2-3m=-2\)
=>\(m^2-3m+2=0\)
=>(m-1)(m-2)=0
=>m=1 hoặc m=2