K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 10 2019

\(-1\le a;b;c\le2\)

\(\Rightarrow\left(a+1\right)\left(a-2\right)\le0\)

\(\Leftrightarrow a^2-a-2\le0\)

\(\Rightarrow a^2-2\le a\)

Tương tự ta có: \(b^2-2\le b\) ; \(c^2-2\le c\)

\(\Rightarrow a+b+c\ge a^2+b^2+c^2-6=0\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(-1;-1;2\right)\) và cách hoán vị

28 tháng 8 2021

\(a\left(b-1\right)+b\left(1-c\right)+c\left(1-a\right)\le1\\ \Leftrightarrow-abc+ab+bc+ca-a-b-c+1\le2-abc\\ \Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\le2-abc\)

lại có \(abc\le1\) nên \(2-abc\ge1\)

ta chứng minh \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)

luôn đúng do \(0\le a;b;c\le1\)

vậy bđt dc cm

tick mik nhaaaaa.mik ms l9 thui

28 tháng 8 2021

hi mik lớp 9

28 tháng 8 2021

Không mất tính tổng quát, giả sử \(a\ge b\ge c\).

Khi đó: \(\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow ab+bc\ge ac+b^2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{c}+1\ge\dfrac{a}{b}+\dfrac{b}{c}\\\dfrac{c}{a}+1\ge\dfrac{c}{b}+\dfrac{b}{a}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\le2+2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)

Vì \(1\le c\le a\le2\Rightarrow\left(\dfrac{a}{c}-2\right)\left(\dfrac{2a}{c}-1\right)\le0\)

\(\Leftrightarrow\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\)

\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\le7\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le10\)

Đẳng thức xảy ra khi \(a=b=2;c=1\) và các hoán vị.

22 tháng 9 2019

chứng minh:(a+b+c)(1/a+1/b+1/c)<=10 nha mn. nhanh hộ mình

22 tháng 9 2019

Không mất tính tổng quát giả sử a≥b≥c\(\Rightarrow \left ( a-b \right )\left ( b-c \right )\geq 0\)

\(\Rightarrow ab+bc\geq b^{2}+ac\)

=>\(\frac{a}{c}+1\geq \frac{b}{c}+\frac{a}{b}\) ; \(\frac{c}{a}+1\geq \frac{b}{a}+\frac{c}{b}\)

=>\(\frac{a}{b}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}\leq \frac{a}{c}+\frac{c}{a}+2=>\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\leq 2+2(\frac{a}{c}+\frac{c}{a})\)

Đặt \(x=\frac{a}{c},\)ta có 2 >= x >= 1 nên x + 1 /x <=5/2 => \(2 + 2 ( a/c + c/a)\)<= 7 => \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)<=7 => đpcm

27 tháng 4 2018

8 tháng 2 2019

Đáp án C

Nhận xét, với x ∈ 1 ; 2  thì f x = x − log 2 x ≤ 0 . Thật vậy, xét  f ' x = x ln 2 − 1 x ln 2

→ f ' x = 0 ⇔ x = 1 ln 2 ⇒ max 1 ; 2 f x = max f 1 , f 1 ln 2 , f 2 = 0

Từ đây suy ra x − 1 ≤ log 2 x ⇒ log 2 3 x ≥ x − 1 3  với  1 ; 2 ⇒ 1 ≥ a − 1 3 + b − 1 3 + c − 1 3

Mặt khác cũng có x 3 − 3 x log 2 x ≤ x 3 − 3 x 1 − x = x 3 − 3 x 2 + 3 x  với  1 ; 2

⇒ P − 3 ≤ x − 1 3 + y − 1 3 + z − 1 3 = 1 ⇒ P ≤ 4

23 tháng 1 2019

Đáp án đúng : C

11 tháng 1 2018

Đáp án C

Nhận xét, với x  ∈ [1;2] thì f(x) = x - log2x  ≤ 0. Thật vậy, xét  f ' ( x )   =   x ln 2   -   1 x ln 2

Từ đây suy ra

Mặt khác cũng có

với [1;2]

NV
10 tháng 4 2021

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

\(\Rightarrow P\le\dfrac{a}{b+c+1}+\dfrac{b}{b+c+1}+\dfrac{c}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

\(\Rightarrow P\le\dfrac{a+b+c}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)=\dfrac{a-1}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)+1\)

\(\Rightarrow P\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{b+c+1}\right]+1\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{bc+b+c+1}\right]+1\)

\(\Rightarrow P\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{\left(1+b\right)\left(1+c\right)}\right]+1\)

\(\Rightarrow P\le\left(1-a\right)\left(\dfrac{\left(1-b^2\right)\left(1-c^2\right)-1}{\left(1+b\right)\left(1+c\right)}\right)+1\)

Do \(a;b;c\le1\Rightarrow\left\{{}\begin{matrix}1-a\ge0\\\left(1-b^2\right)\left(1-c^2\right)\le1\\\end{matrix}\right.\) \(\Rightarrow\left(1-a\right)\left[\dfrac{\left(1-b^2\right)\left(1-c^2\right)-1}{\left(1+b\right)\left(1+c\right)}\right]\le0\)

\(\Rightarrow P\le1\)

\(P_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;0\right);\left(1;1;1\right);\left(0;1;1\right);\left(0;0;1\right)\) và các hoán vị