Cho hàm số f(x) nhận giá trị dương, có đạo hàm liên tục trên [0;2]. Biết f(0) =1 và f x f 2 - x = e 2 x 2 - 4 x với mọi x ∈ [ 0 ; 2 ] . Tính tích phân I = ∫ 0 2 x 3 - 3 x 2 f ' x f x dx .
A. I = -14/3
B. I = -32/5
C. I = -16/3
D. I = -16/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bất đẳng thức Cauchy-Schwarz cho tích phân có:
Đáp án A
Đặt g ( x ) = log 2 ( f ( 2 x ) ) ,
ta có g ' ( x ) = 2 f ' ( 2 x ) f ( 2 x ) ln 2
Theo giả thiết, ta có f ( 2 x ) > 0 , ∀ x ∈ ℝ
Do đó
g ' ( x ) ≥ 0 ⇔ f ' ( 2 x ) ≥ 0 ⇔ [ - 1 ≤ 2 x ≤ 1 2 x ≥ 2 ⇔ [ - 1 2 ≤ x ≤ 1 2 x ≥ 1
(dấu bằng xảy ra tại hữu hạn điểm). Suy ra hàm số y=g(x) đồng biến trên các khoảng - 1 2 ; 1 2 và 1 ; + ∞ . Chọn A.
Chọn đáp án A.