Cho hàm số \(y=f\left(x\right)\) có đạo hàm liên tục trên đoạn [1;2] thoả mãn \(f\left(1\right)=2\) và \(f\left(x\right)-\left(x+1\right)f'\left(x\right)=2xf^2\left(x\right)\), ∀x ϵ [1;2]. Giá trị của \(\int_1^2f\left(x\right)dx\) bằng
A. \(1+\ln2\) B. \(1-\ln2\) C. \(\dfrac{1}{2}-\ln2\) D. \(\dfrac{1}{2}+\ln2\)
\(f\left(x\right)-\left(x+1\right)f'\left(x\right)=2x.f^2\left(x\right)\)
\(\Rightarrow\dfrac{f\left(x\right)-\left(x+1\right)f'\left(x\right)}{f^2\left(x\right)}=2x\)
\(\Rightarrow\left[\dfrac{x+1}{f\left(x\right)}\right]'=2x\)
Lấy nguyên hàm 2 vế:
\(\dfrac{x+1}{f\left(x\right)}=\int2xdx=x^2+C\)
Thay \(x=1\Rightarrow\dfrac{2}{f\left(1\right)}=1+C\Rightarrow C=0\)
\(\Rightarrow f\left(x\right)=\dfrac{x+1}{x^2}\Rightarrow\int\limits^2_1\left(\dfrac{1}{x}+\dfrac{1}{x^2}\right)dx=\left(lnx-\dfrac{1}{x}\right)|^2_1=ln2+\dfrac{1}{2}\)
C