Cho đường thẳng y+(m+1).x+m(d)
a, Tìm giá trị của m để đường thẳng (d) đi qua điểm A(1;2)
b, Tìm giá trị của m để đường thẳng (d) song song với đườgn thẳng y=2x+3
c, Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1 và y=2 vào (d), ta được:
2m+1=2
hay m=1/2
a) Để hàm số đồng biến thì a>0 => m-1>0 <=> m>1
b) Thay M(2;1) vào h/s
1=(m-1).2+2m-5 => m=2
c) Để d song song với đường thẳng trên thì a=a' \(m-1=3\Leftrightarrow m=4\)
d) Cắt 1 điểm trên trục tung thì b=b' \(\Leftrightarrow2m-5=3\Leftrightarrow m=4\)
a: Thay x=2 và y=-3 vào (d), ta được:
\(2\left(2m-1\right)-2m+5=-3\)
=>\(4m-2-2m+5=-3\)
=>2m+3=-3
=>2m=-6
=>\(m=-\dfrac{6}{2}=-3\)
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)
=>m=3/2
Thay m=3/2 vào (d), ta được:
\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)
y=2x+2 nên a=2
Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox
\(tan\alpha=2\)
=>\(\alpha\simeq63^026'\)
a: Thay m=2 vào y=(m-1)x+m-1, ta được:
y=(2-1)x+2-1=x+1
Phương trình hoành độ giao điểm là:
x+1=-x+1
=>2x=0
=>x=0
Thay x=0 vào y=x+1, ta được:
y=0+1=1
Vậy: Tọa độ giao điểm là A(0;1)
b: Thay x=3 và y=4 vào y=(m-1)x+m-1, ta được;
3(m-1)+m-1=4
=>4(m-1)=4
=>m-1=1
=>m=2
c: Để hai đường thẳng này cắt nhau thì \(m-1\ne-1\)
=>\(m\ne0\)
\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua
\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)
Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)
b: Để hai đường song song thì m+1=2
hay m=1