Trong mặt phẳng Oxy cho điểm M(1;2) Phép tịnh tiến theo vecto u → = − 3 ; 4 biến điểm M thành điểm M' có tọa độ là
A. M ' − 2 ; 6
B. M ' 2 ; 5
C. M ' 2 ; − 6
D. M ' 4 ; − 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:
\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}} = 5\)
b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)
Đáp án B
Ta có: T v → ( M ) = M ' = M M ' → = v → ⇔ x M ' - 1 = 3 y M ' + 2 = - 2 ⇔ x M ' = 4 y M ' = - 4 . Vậy M'(4;-4)
Đáp án A
Ta có: x M ' = 1 + − 3 = − 2 y M ' = 2 + 4 = 6 ⇒ M ' − 2 ; 6 .